688 research outputs found
Experimental conditions to suppress edge localised modes by magnetic perturbations in the ASDEX Upgrade tokamak
Access conditions for full suppression of Edge Localised Modes (ELMs) by
Magnetic Perturbations (MP) in low density high confinement mode (H-mode)
plasmas are studied in the ASDEX Upgrade tokamak. The main empirical
requirements for full ELM suppression in our experiments are: 1. The poloidal
spectrum of the MP must be aligned for best plasma response from weakly stable
kink-modes, which amplify the perturbation, 2. The plasma edge density must be
below a critical value, ~m. The edge collisionality
is in the range (ions) and
(electrons). However, our data does not show that the edge collisionality is
the critical parameter that governs access to ELM suppression. 3. The pedestal
pressure must be kept sufficiently low to avoid destabilisation of small ELMs.
This requirement implies a systematic reduction of pedestal pressure of
typically 30\% compared to unmitigated ELMy H-mode in otherwise similar
plasmas. 4. The edge safety factor lies within a certain window.
Within the range probed so far, , one such window,
has been identified. Within the range of plasma rotation
encountered so far, no apparent threshold of plasma rotation for ELM
suppression is found. This includes cases with large cross field electron flow
in the entire pedestal region, for which two-fluid MHD models predict that the
resistive plasma response to the applied MP is shielded
Observation of a multimode plasma response and its relationship to density pumpout and edge-localized mode suppression
Density pumpout and edge-localized mode (ELM) suppression by applied n=2 magnetic fields in low-collisionality DIII-D plasmas are shown to be correlated with the magnitude of the plasma response driven on the high-field side (HFS) of the magnetic axis but not the low-field side (LFS) midplane. These distinct responses are a direct measurement of a multimodal magnetic plasma response, with each structure preferentially excited by a different n=2 applied spectrum and preferentially detected on the LFS or HFS. Ideal and resistive magneto-hydrodynamic (MHD) calculations find that the LFS measurement is primarily sensitive to the excitation of stable kink modes, while the HFS measurement is primarily sensitive to resonant currents (whether fully shielding or partially penetrated). The resonant currents are themselves strongly modified by kink excitation, with the optimal applied field pitch for pumpout and ELM suppression significantly differing from equilibrium field alignment.This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Fusion
Energy Sciences, using the DIII-D National Fusion Facility,
a DOE Office of Science user facility, under Awards No. DE-FC02-04ER54698, No. DE-AC02-09CH11466,
No. DE-FG02-04ER54761, No. DE-AC05-06OR23100,
No. DE-SC0001961, and No. DE-AC05-00OR22725.
S. R. H. was supported by AINSE and ANSTO
Recommended from our members
Modeling of lithium granule injection in NSTX using M3D-C1
In this paper, we present simulations of pedestal control by lithium granule injection (LGI) in NSTX. A model for small granule ablation has been implemented in the M3D-C1 code (Jardin et al 2012 Comput. Sci. Discovery 5 014002), allowing the simulation of realistic lithium granule injections. 2D and 3D simulations of Li injections in NSTX H-mode plasmas are performed and the effect of granule size, injection angle and velocity on the pedestal gradient increase is studied. The amplitude of the local pressure perturbation caused by the granules is found to be highly dependent on the solid granule size. Adjusting the granule injection velocity allows one to inject more particles at the pedestal top. 3D simulations show the destabilization of high order MHD modes whose amplitude is directly linked to the localized pressure perturbation, which is found to depend on the toroidal localization of the granule density source
EGAM Induced by Energetic-electrons and Nonlinear Interactions among EGAM, BAEs and Tearing Modes in a Toroidal Plasma
In this letter, it is reported that the first experimental results are
associated with the GAM induced by energetic electrons (eEGAM) in HL-2A Ohmic
plasma. The energetic-electrons are generated by parallel electric fields
during magnetic reconnection associated with tearing mode (TM). The eEGAM
localizes in the core plasma, i.e. in the vicinity of q=2 surface, and is very
different from one excited by the drift-wave turbulence in the edge plasma. The
analysis indicated that the eEGAM is provided with the magnetic components,
whose intensities depend on the poloidal angles, and its mode numbers are
jm/nj=2/0. Further, there exist intense nonlinear interactions among eEGAM,
BAEs and strong tearing modes (TMs). These new findings shed light on the
underlying physics mechanism for the excitation of the low frequency (LF)
Alfv\'enic and acoustic uctuations.Comment: 5 pages,4 figure
Interferometric study of density fluctuations in a tokamak plasma
Density fluctuations in the LT-4 tokamak plasma are investigated using a Phase
Scintillation Interferometer operating at 10.6/Ltm which is sensitive to density fluctuations
of δnₑ/nₑ> 10⁻¹⁴. The plasma is imaged across a linear detector array
which can be rotated to record projections in any direction, from toroidal to poloidal. The theory of forward scattering from plasmas is developed from the Rytov
approximation and aspects of the Fourier diffraction projection theorem relevant
to plasma scattering. The result is a clear conceptual picture of diffraction from
arbitrary extended refractive media, from which important analytical tools are
developed.
The Phase Scintillation Interferometer is used to image density perturbations
produced by large scale magnetohydro dynamic (MHD) modes in the plasma associated
with Mimov oscillations. Structural characteristics are determined, and a
comparison between experimental and computed projections of the Dubois model
is made which shows that the density fluctuations are consistent with a model of
rotating magnetic islands. Island widths and local magnetic field fluctuations are
determined and are found to compare well with measured poloidal magnetic field
fluctuations.
The interferometer is used in conjunction with other diagnostics to investigate
minor and major disruptions in LT-4. The time frequency distribution is
introduced as an important analytical tool in the characterization of the various
regimes of MHD activity. Frequency and amplitude variations of an m = 3 mode
during current rise appear correlated with variations in toroidal loop voltage. The
mode is also found to persist throughout the whole discharge and to play a part
in mode locking which precedes major disruptions. Mode frequencies are found
to vary in a regular way with the safety factor q(a). Precursor oscillations before minor and major disruptions are identified. A strong m — 1 type of internal
relaxation is found to follow rapid growth and locking of an m = 2 mode during
minor disruptions.
The interferometer is also applied to the measurement of fine scale density
fluctuations in the LT-4 tokamak during periods of low level MHD activity. Line
integral measurements indicate an edge fluctuation level of about 10% and broad
band spectra typical of strong turbulence. Anisotropy in the spectrum of fluctuations
perpendicular to the magnetic field is observed. This observation runs
counter to reported measurements of isotropic fluctuations made on other tokamaks
using small angle scattering techniques. Very long correlation lengths along
the field lines are observed, which are consistent with nearly all models of turbulence
in tokamak plasmas. The images are numerically filtered so as to isolate
and display counter-propagating structures in the turbulent flow
Recommended from our members
Nonstationary interference and scattering from random media
For the small angle scattering of coherent plane waves from inhomogeneous random media, the three dimensional mean square distribution of random fluctuations may be recovered from the interferometric detection of the nonstationary modulational structure of the scattered field. Modulational properties of coherent waves scattered from random media are related to nonlocal correlations in the double sideband structure of the Fourier transform of the scattering potential. Such correlations may be expressed in terms of a suitability generalized spectral coherence function for analytic fields
Pedestal bifurcation and resonant field penetration at the threshold of edge-localized mode suppression in the DIII-D tokamak
Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response. These observations are consistent with strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulations using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearinglike structures as the plasma transitions out of ELM suppression.This work is supported by the U.S. Department
of Energy under Awards No. DE-FC02-04ER54698,
No. DE-AC02-09CH11466, No. DE-FG02-07ER54917, No. DE-FG02-89ER53296, No. DE-FG02-08ER54999,
No. DE-FG02-08ER54984, No. DE-AC05-00OR22725,
No. DE-FG02-86ER53218, and No. DE-FG02-
92ER54139
- …
