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Abstract

For the small angle scattering of coherent plane waves from inhomoge-
neous random media, the three dimensional mean square distribution of
random fluctuations may be recovered from the interferometric detection
of the nonstationary modulational structure of the scattered field. Mod-
ulational properties of coherent waves scattered from random media are
related to nonlocal correlations in the double sideband structure of the
Fourier transform of the scattering potential. Such correlations may be
expressed in terms of a suitably generalized spectral coherence function
for analytic fields.
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In the classical theory of partial coherence it is usually assumed that
the mutual coherence function I'y = (@;43) provides an appropriate rep-
resentation for the second order coberence properties of optical fields
where u is the analytic representation of a real scalar field u® = u + u*
and i = u — (u). One central feature of the theory is that for scalar wide
sense stationary fields, the covariance of the real field I'2 is expressible
in terms of the mutual coherence by the relation 'R = 2Rel',,, where the
mutual correlation T, = (i) is zero by stationarity.1? Also, by the na-
ture of the mutual coherence function in the optical far field, the spectral

coherence of the stationary analytic field i is given by3
i = W‘“—’-—,— (1)
where Wy2 = (U1U3) and Uy = U(kg;,w) is an arbitrary coefficient of
the plane wave decomposition of . |
However, in the important class of problems concerning the scattering
of coherent deterministic waves from random media, where the mutual
correlation may be nonzero yet highly oscillatory, the mutual coherence
(or its real part) is still considered the appropriate second order measure
of the scattered field.2*5 The motivation for overlooking highly oscillatory
terms such as (i) in the real covariance is that it does not constitute
a measurable property of the optical field, where measurability in partial
coherence has traditionally been associated with the visibility of Youngs

interference fringes.

In this paper we show that highly oscillatory terms such as (;u5)
may be determined using heterodyne interferometry and that such terms

provide entirely new information on the three dimensional distribution of
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random media in the experimentally important limit of the small angle
scattering of coherent plane waves. The mutual correl‘ation is shown to
reveal new information on the line of sight distribution of random media
not conveyed by the mutual coherence function for scattering at small

angles to the incident wave.

A key result in the application of coherence theory to the scattering of
coherent waves from quasihomogeneous random media, is that the degree
of coherence of the scattered field in the far zone is related to the mean

square distribution of the scattering potential by the relation
p(ks1, ks ko) = B(ks — ks2)/Z(0),  [ks| = |kof (2)

where ¥ is the Fourier transform of the mean square distribution of fluc-
tuations and kg is a wavevector of the scattered field.> By Eq. (2), in
the experimentally important case of the small angle scattering of coher-
ent plane waves, the spectral coherence conveys limited information on
the location or inhomogeneous distribution of the random medium in the
direction of the incident wave. This is particularly so for approximately
slab-like random media where £(K) ~ §(K_ )X, (K;) and p ~ §(ks; —ks2)
by the Bragg scattering condition |kg| = |ko|. In such cases, the coherence
is independent of and, hence, insensitive to the inhomogeneous distribu-
tion of the random medium in the direction of the incident wave.
However, the scattered field may be shown to convey further informa-
tion on the inhomogeneous distribution of the random medium in the
direction of the incident wave, independent of the degree of homogeneity
of the medium normal to ky. This information is not contained within

the standard measure of spectral coherence for analytic fields given by
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Eq. (1). New information on the location and three dimensional distri-
bution of random media is shown to be contained in the nonstationary
modulational structure of scattered fields which may be recovered by use

of hciercdyne interferometry.

For the coherent scattering of deterministic fields, consider a secondary
source generated by the interaction of monochromatic plane waves with
random media. Within the Born approximation, taking P(r,t) as the
analytic representation of the induced polarization PE in the medium for

an incoming plane wave ug = exp (ikoz — iwpt), then

P(r,t) = n(r, t; wo)ue(r, t) | (3)
where 7 is the real susceptibility assuming wy is sufficiently removed from
any resonances and assuming the bandwidth Q) of fluctuations is very
narrow (23 < wp).8 The covariance of the real polarization is then given
by

It = 2%8[1-‘1: + f‘p] | (4)

where T2 = (PRPR), Tp = (P,P}) is the mutual coherence and T'p =
(P,P,) is the highly oscillatory mutual correlation of the source. As-
suming the real susceptibility is wide sense stationary with covariance
Cr, = (f17), then the nonstationarity of the mutual correlation is evident

from the deterministic nature of uy,

T'p = ug(ry, t1)uo(rs, t2)Ch. (5)

We then have for the covariance of the scattered field,
TR = 2Re [ [ dr'dr" [he,oht, wTp + hu, e, ] (6)
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where h is the appropriate Greens function for the free space propagation
of the analytic field u with source function P satisfying the inhomoge-
neous Helmholtz wave equation. In Eq. (6), % is assumed not to vary
over the propagation time of the field through the medium to the observer
plane. T'p is by Eq. (6) the source term for I, in the covariance of the
scattered field. Unlike the mutual coherence, the highly oscillatory na-
ture of I', (for # —t = const.) makes it inaccessible to direct measurement
via a Youngs interference (or Michelson interferometer) experiment which
recovers terms proportional to 2Re[u;u}], related to the measurability of
interference fringes via the relation [ c.f. Fig. 1(a) ]

I(r,t) oc |ug)? + |ug|? + 2Re[u;ul), (7)

\
where u; = u(r;,t — ;). Fringes result from relative path delays 7; in the

propagation of the field to the point of measurement.!* Terms such as
ujug are typically ignored in the classical representation of the instan-
taneous intensity by the physical requirement that square law detectors
integrate for a time Tj,; 3> 27w /wy, although such detectability criteria do

not naturally arise out of the classical theory.

We instead address the question of measurability by considering the
heterodyne detection of the scattered field as shown in Fig. 1(b) where
the local oscillator w' = exp [i(kjz — wjt + ¢g)] is derived from the same
coherent source as uy but doppler shifted down in frequency to wy—; via
some mechanical or acousto-optic technique such that Qy < Qy € wy.
The measurable oscillatory component of ‘“\jthe interference is then given
by vE = 2Re[un’"]. If we require Qg >> Qp to avoid ambiguity in the sign

of measured frequency shifts in the scattered field, then v = wu'* is the
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appropriate analytic representation of the real interference. In terms of

the analytic signal v, the covariance of v® is given by

I'E = 2Rell', +T,], (8)
where T, = u'Ju/sT,
and T, = uju;T,.

By Eq. (8), the mutual correlation of v® is nonzero and oscillates
with the much lower and measurable frequency 2{); instead of 2w for
the covariance of the scattered field. For simplicity we have assumed wug
is deterministic in order to demonstrate the correspondence between the
covariance of the scattered field and that of the measurable interference.
However if u is not assumed deterministic such that (ug) = 0 and T', =
0, the covariance of v® remains nonstationary provided ugu’* remains
deterministic as in the heterodyne detection of highly coherent optical
or microwave sources. As C, is wide sense stationary, I'? is periodic
in t = (t; + t3)/2 with period m/Q. The detectable interference v%
is representative of the class of harmonically modulated random fields.
General properties of one dimensional random modulational fields may

be found in the literature on nonstationary processes.’

The appearance of nonstationarity in the scattered field results from
nonlocal correlations in the Fourier transform of the source. Unlike ther-
mal sources (which may be considered a linear superposition of uncor-
related harmonic oscillators), modulated fields are characterized by cor-
related sidebands symmetrically displaced about the carrier frequency
(ko,wp). The statistical correlation between equispaced sidebands about

the carrier frequency is conveyed by the Fourier transform of the non-
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stationary mutual correlation. The degree of correlation between sym-
metrically displaced sidebands in the forward scattered field provides new
information on the three dimensional distribution of randomly modulated

coherent sources i.e., scattering potentials.

By Eq. (3), the polarization represents the spatial and temporal mod-
ulations impressed on ug by irregularities in the medium. For example,
an arbitrary real wave of frequency (K, (2) in any one realization of the
random medium modulates the incident wave generating symmetrically
displaced sidebands at frequencies (kg + K,wq = ) in the Fourier trans-
form of the polarization. Taking the Fourier transform of I'p and making
use of the relation 771(0 = nk,q for the Fourier transform of 7 leads to

the expected correlation between opposite sidebands of the source,

<‘pk1ywlpk21w2) x (nkl“kOswl‘wonio—kg,wl—wo)é(wl + w2 — 2(4)0). (9)

We may interpret the origin of the nonstationarity in the source to the
correlation between symmetrically displaced spectral lines in the polar-
ization. This correlation may in turn be considered characteristic of
randomly modulated coherent fields, analogous to the double sideband
structure of amplitude and frequency modulated radio waves. If on the
other hand the incident wave is assumed te have no deterministic com-
ponent, then the correlation between opposite sidebands disappears as in
the recently discussed case of the scattering of random fields .. om ran-
dom media.®® By further considering the symmetry properties of scat-
tered fields from the perspective of the Fourier diffraction projection

9,10

theorem,*"” we show that the correlation between opposite sidebands

in the scattered field, as measured on an arbitrary plane in front of the
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source, relays information on the distribution of the random medium in

the direction of the incident wave.

For heterodyne interferométry, we are specifically interested in the pla-
nar measurement of the scattered field at a fixed (but arbitrary) z;. Such
a geometry is motivated by the experimental constra.iﬁt of detecting the
scattered field on a planar or linear array of heterodyne receivers.!! The
planar Fourier transform Uk , of the scattered field i(r, ,¢; zo) is related
to the spectrum of the polarization by the expression

i

UK_L,w 0.8 ‘ﬂ eik"zoPK.L,k“,w (10)

where k; = Vk8 — K2 is positive, consistent with forward scattering.!2
Inserting Uk, . into the expression for Vi, o (the Fourier transform on
the plane z = 2 of the analytic signal ¥ of the measurable interference

#®) we obtain

Vi, otn X €51 g ko0 (11)

where K ~ —K3 /2ko, which is valid within the parabolic approxima-
tion for the small angle scattering of high frequency waves. Apart from
various phase factors, Eq. (11) is a restatement of the Bragg condition
for the elastic scattering of coherent waves where ks = ko + K subject
to the constraint |kg| = |ko|. For sufficiently small scattering angles,
ks ~ (K.,ko + K). The locus of all points in k-space satisfying the
Bragg condition is illustrated in Fig. 2 by the parabolic slice through the
Fourier transform of the medium. The graphical representation of the
Bragg condition makes clear the connection between :lastic scattering

in optics and the Fourier projection theorem in tomography.?!? Impor-
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tantly, note that only the half space K, < 0 contributes to the spectrum
of the scattered field. An interesting consequence of elastic scattering is
that the spectrum of the scattered field need not retain the same sym-
metry between opposite sidebands about (kg,w) as does the spectrum of
the polarization in Eq. (9). Specifically, although the pbla.rization retains
complete information on the spectral distribution of the random medium,
only a small asymmetric component of the source spectrum is radiated
to the observer plane. We may, however, make use of this asymmetry
in the scattered field to further investigate the inhomogeneous distribu-
tion of the source in the direction of the incident wave. As in Eq. (9)
for the polarization, taking the correlation between opposite sidebands

Vi = Vik, a.+n on the detector plane gives
(ViVl) o e¥fim(n,n?) (12)

where 7y = 7k, 1k, and Qo = Qy > 0. Importantly, the asymmetric
distribution of the scattered field in K, (shown in Fig. 2) allows the
coherence between the two Fourier components nyk L£K,n displaced by
K. = 2K|| to be recovered from the correlation between the two Fourier
components Vik n,+q of the interference. This result seems intuitively
surprising as those components with K, > 0 do not directly contribute
to the scattered field. By Eq. (12), the Fourier transform of the mu-
tﬁa.l correlation appears to convey new information on che inhomoge-
neous distribution of the random medium in the direction of the incident
wave, independent of the spectral coherence (homogeneity) of the random
medium normal to ky. This result appears at odds with Eq. (2) derived

from the standard measure of spectral coherence for the analytic field.



Formally, we define the generalized spectral coherence of the analytic
signal ¥ by the expression
K1z = s
[Wh]2 W] /2 |
where W}, = Wiz + Wiz, Wi = (VV;) is the cross spectral density
and Wiz = (V1Va) in the cross spectral correlation. An illustration of the

(13)

- nonlocal nature of the cross spectral correlation in the Fourier transform
plane of the signal is shown in Fig. 3. In terms of W and W, the
gen‘eralized spectral coherence becomes
P12 = W121/'2+" W11/22 )
Wii™ Wy
~ where Wy; = 0 by the nonstationarity of I',. The first term in Eq. (14) is
the usual expression for the spectral coherence of stationary analytic fields

(14)

whereas the second term is the new component of the spectral coherence

associated with the nonstationary structure of modulated fields.

We now introduce the widely used model assumption of quasihomo-
geneity for the random medium, C, = I(F)p(r',t'), where p is the real
symmetric correlation function and I(f) = (|4|?) is the inhomogeneous
distribution of the random medium where F = 1/2(r; + 1), ¥ =r; — 1
and t' = t; — t3. The cross spectral density C;, = (7x,n,7k,q,) of the
susceptibility is given by

¢, = (K - K,)S(K,0) 60 — Q) - 15)

where ¥ (the Fourier transform of I) represents the shift invariant spec-
tral coherence function and S is the real symmetric Fourier transform of
the two point correlation p where (K, Q) = [1/2(K;+ K2),1/2(Q; + Q)]
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An important consequence of quasi-homogeneity is that S(K, Q) is uni-
form about any K within a range AK determined by the spectral width
of the coherence function £ (c.f. Fig. 2).° Within the range where
|Z(AK)/Z(0)| ~ 1, Eq. (14) becomes

pla = p-6(Q-) + py6(Q) (16)
‘where  py = exp (iKz .koz0)Z(K+)/Z(0) ,
| 0r = (21— Q) (22— D) ,

K: = (KuxKip,KpxKp) .

The relative phase ¢ between uy and u' is nominally set to 7/2 at t =0
and ko = ko/|kg|. In Eq. (16), u_ may be derived from the standard
measure of spectral coherence [ c.f. Egs. (1)&(2) | whereas p, resembles
the normalized spectral correlation derived from the time independent
complex phase of the scattered field.!® Note that {4 may sample a much
wider coherence range in K, than y_ by taking nonlocal correlations be-
tween opposite sidebands V.k, q,+n on the plane of measurement. Given
Ky is the maximum resolved wavenumber on the detector plane then
the sampled coherence range in K, is AK, = K2/kg, as illustrated in
Fig. 2. Considering only the nonstationary component of the covariance

and introducing two new independent variables K| = K,; + Klg and
K! = —|K,; — K]3|?/4k, gives

pe = eN2S(K K)/2(0) (17)
which is valid within the parabolic and quasi-homogeneity approxima-

tions AK, /kg « Ko/kg <« 1, where AK, is the spectral width of T
normal to kg. Note that the form of Eq. (17) is identical to the three

mn
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dimensional Fourier transform of I(r) relative to the location of the de-
tector plane. Hence, taking the inverse Fourier transform of p; over the

measurable spectral range gives

‘ Ko dK' 0 dK; 1K . (r—r
Ip(r)/Iy =~ ZRe/_KO (2‘”;‘2/ 2Ky (K)

-K3/ko 27

where Iy = £(0), ry = koz and Ip is given by I(r) band limited to
AK, = K2/k,. Both the absolute location and three dimensional distri-
bution of random media may then be recovered from the measurement of
nonstationary correlations in the forward scattered field. Intuitively, the
correlation between symmetrically displaced diffraction orders provides
a stereoscopic view of the three dimensional inhcmogeneous distribution
of random media not contained within the stationary component of the
covariance. In an analogy with tomography, information contained in
the nonstationary correlation between opposite sidebands of the forward
scattered field is qualitatively similar to information which may be recov-
ered from the cross correlation between two geometric projections of the

random medium separated by a relative angle 8 = Ky/ky.

Existing experimental techniques based on the coherent detection of
optical, microwave or acoustic waves scattered from random media may
readily be adapted to investigate nonstationary properties of the mea-
surzd signal. The application of this measure to existing multichannel
imaging and scattering experiments will be discussed elsewhere.
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Figure Captions

Fig. 1. The visibility of Youngs interference fringes [ shown in 1(a) ]
conveys information on the mutual coherence of random optical fields.
In 1(b), both the mutual coherence and highly oscillatory mutual
correlation may be recovered from the interferometric detection of

the scattered field.

Fig. 2. The correlation between symmetrically displaced sidebands
Vik, 0,+n on the detector plane is a measure of the coherence be-
tween the two Fourier components 7k, 1k, q in the random medium.
Shaded regions indicate the rangé of spectral coherence about any

wavenumber.

Fig. 3. The cross spectral density W), and the nonlocal cross spectral
correlation W), are shown in terms of correlations between appropri-
ate components of the planar Fourier transform of the measurable

interference.
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