4 research outputs found

    Prognostic Value of Stromal Type IV Collagen Expression in Small Invasive Breast Cancers

    Get PDF
    Breast cancer is the most common cause of cancer death among women worldwide. Localized breast cancer can be cured by surgery and adjuvant therapy, but mortality remains high for tumors that metastasize early. Type IV collagen is a basement membrane protein, and breach of this extracellular matrix structure is the first step of cancer invasion. Type IV collagen is found in the stroma of many cancers, but its role in tumor biology is unclear. Here, expression of type IV collagen in the stroma of small breast cancers was analyzed, correlated to clinically used prognostic biomarkers and patient survival. The findings were further validated in an independent gene expression data cohort. Tissue samples from 1,379 women with in situ and small invasive breast cancers (Peer reviewe

    Expression and Circulating Levels of Perlecan in Breast Cancer : Implications for Oestrogen Dependent Stromal Remodeling

    No full text
    Localised breast cancer can be cured by surgery and adjuvant treatments, but mortality remains high as some tumours metastasize early. Perlecan is a basement membrane (BM) protein involved in tumour development and progression. Here, mRNA and protein expression of perlecan, and mRNA expression of matrix degrading enzymes were studied in normal breast and invasive breast cancer, and correlated to prognostic risk factors, in particular oestrogen status. Moreover, plasma levels of perlecan were measured in patients with breast cancer and compared with controls. mRNA data was extracted from the Cancer Genome Atlas database. Perlecan protein expression was visualized using immunofluorescence and plasma levels measured by ELISA assay. Perlecan mRNA levels were twice as high in normal breast compared with breast cancer tissue. A strong correlation was found between mRNA expression of perlecan and several matrix-degrading enzymes in oestrogen receptor positive (ER+) tumours. Perlecan protein was localized to both epithelial and vascular BMs, but absent in the stroma in normal breast. In breast cancer, the expression of perlecan in epithelial BM was fragmented or completely lost, with a marked upregulation of perlecan expression in the stroma. Significantly higher levels of perlecan were found in plasma of ER+ patients when compared with ER- patients. This study shows that perlecan expression and degradation in breast cancer may be linked to the ER status of the tumour

    Stromal type I collagen in breast cancer : correlation to prognostic biomarkers and prediction of chemotherapy response

    No full text
    Introduction: Fibrillar collagens accumulate in the breast cancer stroma and appear as poorly defined spiculated masses in mammography imaging. The prognostic value of tissue type I collagen remains elusive in treatment-naïve and chemotherapy-treated breast cancer patients. Here, type I collagen mRNA and protein expression were analysed in 2 large independent breast cancer cohorts. Levels were related to clinicopathological parameters, prognostic biomarkers, and outcome. Method: COL1A1 mRNA expression was analysed in 2509 patients with breast cancer obtained from the cBioPortal database. Type I collagen protein expression was studied by immunohistochemistry in 1395 women diagnosed with early invasive breast cancer. Results: Low COL1A1 mRNA and protein levels correlated with poor prognosis features, such as hormone receptor negativity, high histological grade, triple-negative subtype, node positivity, and tumour size. In unadjusted analysis, high stromal type I collagen protein expression was associated with improved overall survival (OS) (HR = 0.78, 95% CI = 0.61-0.99, p = .043) and trended towards improved breast cancer–specific survival (BCSS) (HR = 0.65, 95% CI = 0.42-1.01, P = 0.053), although these findings were lost after adjustment for other clinical variables. In unadjusted analysis, high expression of type I collagen was associated with better OS (HR = 0.70, 95% CI = 0.55-0.90, P = .006) and BCSS (HR = 0.55, 95% CI = 0.34-0.88, P = .014) among patients not receiving chemotherapy. Strikingly, the opposite was observed among patients receiving chemotherapy. There, high expression of type I collagen was instead associated with worse OS (HR = 1.83, 95% CI = 0.65-5.14, P = .25) and BCSS (HR = 1.72, 95% CI = 0.54-5.50, P = .357). Conclusion: Low stromal type I collagen mRNA and protein expression are associated with unfavourable tumour characteristics in breast cancer. Stromal type I collagen might predict chemotherapy response
    corecore