2,297 research outputs found

    A weak turbulence theory for incompressible magnetohydrodynamics

    Get PDF
    We derive a weak turbulence formalism for incompressible magnetohydrodynamics. Three-wave interactions lead to a system of kinetic equations for the spectral densities of energy and helicity. The kinetic equations conserve energy in all wavevector planes normal to the applied magnetic field B0ê[parallel R: parallel]. Numerically and analytically, we find energy spectra E± [similar] kn±[bot bottom], such that n+ + n− = −4, where E± are the spectra of the Elsässer variables z± = v ± b in the two-dimensional case (k[parallel R: parallel] = 0). The constants of the spectra are computed exactly and found to depend on the amount of correlation between the velocity and the magnetic field. Comparison with several numerical simulations and models is also made

    Warm turbulence in the Boltzmann equation

    Get PDF
    We study the single-particle distributions of three-dimensional hard sphere gas described by the Boltzmann equation. We focus on the steady homogeneous isotropic solutions in thermodynamically open conditions, i.e. in the presence of forcing and dissipation. We observe nonequilibrium steady state solution characterized by a warm turbulence, that is an energy and particle cascade superimposed on the Maxwell-Boltzmann distribution. We use a dimensional analysis approach to relate the thermodynamic quantities of the steady state with the characteristics of the forcing and dissipation terms. In particular, we present an analytical prediction for the temperature of the system which we show to be dependent only on the forcing and dissipative scales. Numerical simulations of the Boltzmann equation support our analytical predictions.Comment: 4 pages, 5 figure

    Magnetic order in lightly doped cuprates: Coherent vs. incoherent hole quasiparticles and non-magnetic impurities

    Full text link
    We investigate magnetic properties of lightly doped antiferromagnetic Mott insulators in the presence of non-magnetic impurities. Within the framework of the t-J model we calculate the doping dependence of the antiferromagnetic order parameter using the self-consistent diagrammatic techniques. We show that in the presence of non-magnetic impurities the antiferromagnetic order is more robust against hole doping in comparison with the impurity-free host, implying that magnetic order can re-appear upon Zn doping into lightly hole-doped cuprates. We argue that this is primarily due to the loss of coherence and reduced mobility of the hole quasiparticles caused by impurity scattering. These results are consistent with experimental data on Zn-doped LaSrCuO.Comment: 11 pages, 7 figs, (v2) final version as publishe

    Superconductivity in the Cuprates as a Consequence of Antiferromagnetism and a Large Hole Density of States

    Full text link
    We briefly review a theory for the cuprates that has been recently proposed based on the movement and interaction of holes in antiferromagnetic (AF) backgrounds. A robust peak in the hole density of states (DOS) is crucial to produce a large critical temperature once a source of hole attraction is identified. The predictions of this scenario are compared with experiments. The stability of the calculations after modifying some of the original assumptions is addressed. We find that if the dispersion is changed from an antiferromagnetic band at half-filling to a tight binding coskx+coskycosk_x + cosk_y narrow band at =0.87 =0.87, the main conclusions of the approach remain basically the same i.e. superconductivity appears in the dx2y2d_{x^2 - y^2}-channel and TcT_c is enhanced by a large DOS. The main features distinguishing these ideas from more standard theories based on antiferromagnetic correlations are here discussed.Comment: RevTex, 7 pages, 5 figures are available on reques

    Dynamical properties of the single--hole tt--JJ model on a 32--site square lattice

    Full text link
    We present results of an exact diagonalization calculation of the spectral function A(k,ω)A(\bf k, \omega) for a single hole described by the tt--JJ model propagating on a 32--site square cluster. The minimum energy state is found at a crystal momentum k=(π2,π2){\bf k} = ({\pi\over 2}, {\pi\over 2}), consistent with theory, and our measured dispersion relation agrees well with that determined using the self--consistent Born approximation. In contrast to smaller cluster studies, our spectra show no evidence of string resonances. We also make a qualitative comparison of the variation of the spectral weight in various regions of the first Brillouin zone with recent ARPES data.Comment: 10 pages, 5 postscript figures include

    Application of a superparametric finite shell element to the calculation of turbine blade vibrations

    Get PDF
    Determination of the natural frequencies and forms of vibrations of turbine blades with the present level of knowledge is one of the chief problems that have to be solved at the design stage of turbines in order to ensure vibration reliability. Greater possibilities of devising more correct mathematical models of blades and universal methods of investigating their vibrations are opened up in connection with the application of the finite element method.Для расчета колебаний лопаток турбомашин сложной геометрии используют суперпараметрические оболочечные конечные элементы

    The Kelvin-wave cascade in the vortex filament model

    Get PDF
    The energy transfer mechanism in zero temperature superfluid turbulence of helium-4 is still a widely debated topic. Currently, the main hypothesis is that weakly nonlinear interacting Kelvin waves transfer energy to sufficiently small scales such that energy is dissipated as heat via phonon excitations. Theoretically, there are at least two proposed theories for Kelvin-wave interactions. We perform the most comprehensive numerical simulation of weakly nonlinear interacting Kelvin-waves to date and show, using a specially designed numerical algorithm incorporating the full Biot-Savart equation, that our results are consistent with nonlocal six-wave Kelvin wave interactions as proposed by L'vov and Nazarenko.Comment: 6 pages, 6 figure
    corecore