21 research outputs found
Treatment of Full-Thickness Acetabular Chondral Flaps during Hip Arthroscopy: Bone Marrow Aspirate Concentrate versus Microfracture
Background: The optimal treatment strategy for patients with full-thickness chondral flaps undergoing hip arthroscopy is controversial.
Purpose: To compare functional outcomes of patients who underwent bone marrow aspirate concentrate (BMAC) application with those of patients who underwent microfracture.
Study Design: Cohort study; Level of evidence, 3.
Methods: This was a retrospective case series of prospectively collected data on patients who underwent arthroscopic acetabular labral repair by 1 surgeon between June 2014 and April 2020. The inclusion criteria for this study were age ≥18 years, preoperative radiographs of the pelvis, arthroscopic acetabular labral repair, exposed subchondral bone with overlying chondral flap seen at the time of hip arthroscopy, microfracture or BMAC to address this lesion, and completed patient-reported outcome measures (PROMs) (International Hip Outcome Tool-33 [iHOT-33], Hip Outcome Score-Activities of Daily Living [HOS-ADL], Hip Outcome Score-Sports Subscale [HOS-Sport], modified Harris Hip Score [mHHS], and visual analog scale [VAS] for pain) at enrollment and 12-month follow-up. Clinical outcomes were assessed using PROM scores.
Results: A total of 81 hips with full-thickness chondral flaps were included in this study: 50 treated with BMAC and 31 treated with microfracture. There were no significant differences between groups in age, sex, body mass index, tear size, radiographic osteoarthritis, or radiographic femoroacetabular impingement. In the BMAC cohort, all PROM scores improved significantly from preoperatively to follow-up: 41.7 to 75.6 for iHOT-33, 67.6 to 91.0 for HOS-ADL, 41.5 to 72.3 for HOS-Sport, 59.4 to 87.2 for mHHS, and 6.2 to 2.2 for VAS pain (P \u3c .001 for all). In the microfracture cohort, the score improvements were 48.0 to 65.1 for iHOT-33 (P = .001), 80.5 to 83.3 for HOS-ADL (P = .275), 59.2 to 62.4 for HOS-Sport (P = .568), 70.4 to 78.3 for mHHS (P = .028), and 4.9 to 3.6 for VAS pain (P = .036). Regarding clinically meaningful outcomes, 77.6% of the BMAC group and 50.0% of the microfracture group met the minimal clinically important difference for iHOT-33 at the 12-month follow-up (P = .013).
Conclusion: Patients with full-thickness chondral flaps at the time of hip arthroscopy experienced greater improvements in functional outcome scores at the 12-month follow-up when treated with BMAC as opposed to microfracture
Effectiveness of epoxy coating modified with yttrium oxide loaded with imidazole on the corrosion protection of steel
The search for highly effective corrosion protection solutions to avoid degradation of the metallic parts is enabling the development of polymeric organic coatings. Of particular relevance, polymeric nanocomposite coatings, modified with corrosion inhibitors, have been developed to provide enhanced surface protection. In this work, yttrium oxide nanoparticles loaded with corrosion inhibitor (Imidazole), used as additives in the formulation of epoxy for coated on the steel substrate. The loading of Y2O3 with imidazole was confirmed by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller analysis. UV-Vis analysis demonstrated the pH-sensitive behavior of the imidazole that helps in self-release when necessary. Electrochemical impedance spectroscopy (EIS) of the coated samples revealed that the coating modified with Y2O3/IMD provides better corrosion protection compared to coatings containing only Y2O3 . XPS analysis validated the presence of an imidazole protective film on the steel substrate that enhanced the corrosion resistance of the coated samples.The research funding was provided by the Qatar National Research Fund (a member of the Qatar Foundation, Grant Number NPRP11S-1226-170132. The additional funding for the project was also provided under the project UIDB/00100/2020 and UIDP/00100/2020.Scopu
Effects of immunosuppressive drugs on COVID-19 severity in patients with autoimmune hepatitis
Background: We investigated associations between baseline use of immunosuppressive drugs and severity of Coronavirus Disease 2019 (COVID-19) in autoimmune hepatitis (AIH). Patients and methods: Data of AIH patients with laboratory confirmed COVID-19 were retrospectively collected from 15 countries. The outcomes of AIH patients who were on immunosuppression at the time of COVID-19 were compared to patients who were not on AIH medication. The clinical courses of COVID-19 were classified as (i)-no hospitalization, (ii)-hospitalization without oxygen supplementation, (iii)-hospitalization with oxygen supplementation by nasal cannula or mask, (iv)-intensive care unit (ICU) admission with non-invasive mechanical ventilation, (v)-ICU admission with invasive mechanical ventilation or (vi)-death and analysed using ordinal logistic regression. Results: We included 254 AIH patients (79.5%, female) with a median age of 50 (range, 17-85) years. At the onset of COVID-19, 234 patients (92.1%) were on treatment with glucocorticoids (n = 156), thiopurines (n = 151), mycophenolate mofetil (n = 22) or tacrolimus (n = 16), alone or in combinations. Overall, 94 (37%) patients were hospitalized and 18 (7.1%) patients died. Use of systemic glucocorticoids (adjusted odds ratio [aOR] 4.73, 95% CI 1.12-25.89) and thiopurines (aOR 4.78, 95% CI 1.33-23.50) for AIH was associated with worse COVID-19 severity, after adjusting for age-sex, comorbidities and presence of cirrhosis. Baseline treatment with mycophenolate mofetil (aOR 3.56, 95% CI 0.76-20.56) and tacrolimus (aOR 4.09, 95% CI 0.69-27.00) were also associated with more severe COVID-19 courses in a smaller subset of treated patients. Conclusion: Baseline treatment with systemic glucocorticoids or thiopurines prior to the onset of COVID-19 was significantly associated with COVID-19 severity in patients with AIH.Fil: Efe, Cumali. Harran University Hospita; TurquíaFil: Lammert, Craig. University School of Medicine Indianapolis; Estados UnidosFil: Taşçılar, Koray. Universitat Erlangen-Nuremberg; AlemaniaFil: Dhanasekaran, Renumathy. University of Stanford; Estados UnidosFil: Ebik, Berat. Gazi Yasargil Education And Research Hospital; TurquíaFil: Higuera de la Tijera, Fatima. Hospital General de México; MéxicoFil: Calışkan, Ali R.. No especifíca;Fil: Peralta, Mirta. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; ArgentinaFil: Gerussi, Alessio. Università degli Studi di Milano; ItaliaFil: Massoumi, Hatef. No especifíca;Fil: Catana, Andreea M.. Harvard Medical School; Estados UnidosFil: Purnak, Tugrul. University of Texas; Estados UnidosFil: Rigamonti, Cristina. Università del Piemonte Orientale ; ItaliaFil: Aldana, Andres J. G.. Fundacion Santa Fe de Bogota; ColombiaFil: Khakoo, Nidah. Miami University; Estados UnidosFil: Nazal, Leyla. Clinica Las Condes; ChileFil: Frager, Shalom. Montefiore Medical Center; Estados UnidosFil: Demir, Nurhan. Haseki Training And Research Hospital; TurquíaFil: Irak, Kader. Kanuni Sultan Suleyman Training And Research Hospital; TurquíaFil: Melekoğlu Ellik, Zeynep. Ankara University Medical Faculty; TurquíaFil: Kacmaz, Hüseyin. Adıyaman University; TurquíaFil: Balaban, Yasemin. Hacettepe University; TurquíaFil: Atay, Kadri. No especifíca;Fil: Eren, Fatih. No especifíca;Fil: Alvares da-Silva, Mario R.. Universidade Federal do Rio Grande do Sul; BrasilFil: Cristoferi, Laura. Università degli Studi di Milano; ItaliaFil: Urzua, Álvaro. Universidad de Chile; ChileFil: Eşkazan, Tuğçe. Cerrahpaşa School of Medicine; TurquíaFil: Magro, Bianca. No especifíca;Fil: Snijders, Romee. No especifíca;Fil: Barutçu, Sezgin. No especifíca;Fil: Lytvyak, Ellina. University of Alberta; CanadáFil: Zazueta, Godolfino M.. Instituto Nacional de la Nutrición Salvador Zubiran; MéxicoFil: Demirezer Bolat, Aylin. Ankara City Hospital; TurquíaFil: Aydın, Mesut. Van Yuzuncu Yil University; TurquíaFil: Amorós Martín, Alexandra Noemí. No especifíca;Fil: De Martin, Eleonora. No especifíca;Fil: Ekin, Nazım. No especifíca;Fil: Yıldırım, Sümeyra. No especifíca;Fil: Yavuz, Ahmet. No especifíca;Fil: Bıyık, Murat. Necmettin Erbakan University; TurquíaFil: Narro, Graciela C.. Instituto Nacional de la Nutrición Salvador Zubiran; MéxicoFil: Bıyık, Murat. Uludag University; TurquíaFil: Kıyıcı, Murat. No especifíca;Fil: Kahramanoğlu Aksoy, Evrim. No especifíca;Fil: Vincent, Maria. No especifíca;Fil: Carr, Rotonya M.. University of Pennsylvania; Estados UnidosFil: Günşar, Fulya. No especifíca;Fil: Reyes, Eira C.. Hepatology Unit. Hospital Militar Central de México; MéxicoFil: Harputluoğlu, Murat. Inönü University School of Medicine; TurquíaFil: Aloman, Costica. Rush University Medical Center; Estados UnidosFil: Gatselis, Nikolaos K.. University Hospital Of Larissa; GreciaFil: Üstündağ, Yücel. No especifíca;Fil: Brahm, Javier. Clinica Las Condes; ChileFil: Vargas, Nataly C. E.. Hospital Nacional Almanzor Aguinaga Asenjo; PerúFil: Güzelbulut, Fatih. No especifíca;Fil: Garcia, Sandro R.. Hospital Iv Víctor Lazarte Echegaray; PerúFil: Aguirre, Jonathan. Hospital Angeles del Pedregal; MéxicoFil: Anders, Margarita. Hospital Alemán; ArgentinaFil: Ratusnu, Natalia. Hospital Regional de Ushuaia; ArgentinaFil: Hatemi, Ibrahim. No especifíca;Fil: Mendizabal, Manuel. Universidad Austral; ArgentinaFil: Floreani, Annarosa. Università di Padova; ItaliaFil: Fagiuoli, Stefano. No especifíca;Fil: Silva, Marcelo. Universidad Austral; ArgentinaFil: Idilman, Ramazan. No especifíca;Fil: Satapathy, Sanjaya K.. No especifíca;Fil: Silveira, Marina. University of Yale. School of Medicine; Estados UnidosFil: Drenth, Joost P. H.. No especifíca;Fil: Dalekos, George N.. No especifíca;Fil: N.Assis, David. University of Yale. School of Medicine; Estados UnidosFil: Björnsson, Einar. No especifíca;Fil: Boyer, James L.. University of Yale. School of Medicine; Estados UnidosFil: Yoshida, Eric M.. University of British Columbia; CanadáFil: Invernizzi, Pietro. Università degli Studi di Milano; ItaliaFil: Levy, Cynthia. University of Miami; Estados UnidosFil: Montano Loza, Aldo J.. University of Alberta; CanadáFil: Schiano, Thomas D.. No especifíca;Fil: Ridruejo, Ezequiel. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Wahlin, Staffan. No especifíca
Pequeñas economías, grandes desafíos: Políticas económicas para el desarrollo en Centroamérica
El objetivo de "Pequeñas economías, grandes desafíos" es profundizar la comprensión de los desafíos y opciones de política económica que enfrentan los países de Centroamérica y República Dominicana en su cambiante proceso de desarrollo económico y social. En consecuencia, su enfoque es de largo plazo y se concentra en una evaluación del proceso económico desde 1950, con particular atención en los años noventa. La primera parte del libro presenta un análisis regional que explora el efecto sobre el crecimiento económico de la acumulación de factores productivos, la inserción en la economía mundial, el funcionamiento del sistema financiero y el desarrollo institucional. En la segunda parte se analizan las experiencias nacionales de Costa Rica, República Dominicana y El Salvador. Los países centroamericanos y República Dominicana han sido poco estudiados en comparación con otras regiones del mundo en desarrollo. Este libro aporta importante evidencia empírica para la comprensión de la evolución, los desafíos y las posibilidades de las economías de estos países
NEW METHODOLOGY FOR FUNGAL SCREENING - XYLANOLYTIC ENZYMES
The technique for determining extracellular xylanolytic activity consists of growing selected fungi for four days on agar medium containing 1% xylan. A section of the agar is then homogenized in buffer and the filtered solution tested for xylanase activity and other related enzymes.71182182
New Methodology For Fungal Screening: Xylanolytic Enzymes
The technique for determining extracellular xylanolytic activity consists of growing selected fungi for four days on agar medium containing 1% xylan. A section of the agar is then homogenized in buffer and the filtered solution tested for xylanase activity and other related enzymes. © 1993 Chapman & Hall.71182182
Proximal humerus and ilium are reliable sources of bone marrow aspirates for biologic augmentation during arthroscopic surgery
Purpose: The purpose of this study was to evaluate the number of colony-forming units (CFUs) derived from concentrated bone marrow aspirates (BMAs) that were processed following arthroscopic harvest from either the proximal humerus or the body of the ilium during biologic augmentation of the rotator cuff and acetabular labral repairs. Methods: Between November 2014 and January 2019, BMA was harvested from the proximal humerus (n = 89) and the body of the ilium (n = 30) during arthroscopic surgery. Following concentration of the aspirate, a 0.5-mL aliquot was further processed and the number of nucleated cells (NC) was counted. Bach aliquot was cultured until CFUs were quantifiable. Fluorescence-activated cell sorting analysis and quantitative polymerase chain reaction was performed to confirm presence of mesenchymal stem cells. BMA harvest sites were prospectively assessed and evaluated for differences in age, sex, volume of aspirated BM, and CFUs per milliliter of BMA. Results: The prevalence (38.57 +/- 27.92(ilium) vs. 56.00 +/- 25.60(humerus) CFUs per 10(6) nucleated cells) and concentration (979.17 +/- 740.31(ilium) vs. 1,516.62 +/- 763.63(humerus) CFUs per 1.0 mL BMA) of CFUs was significantly higher (P .05, respectively). Conclusion: Both proximal humerus and the body of the ilium can be considered reliable sources of bone marrow aspirate for the use in biologic augmentation during their respective arthroscopic surgery. Samples of bone marrow aspirate from the proximal humerus yielded a significantly higher amount of CFUs when compared with samples of BMA obtained from the ilium
Rapid In-Process Measurement of Live Virus Vaccine Potency Using Laser Force Cytology: Paving the Way for Rapid Vaccine Development
Vaccinations to prevent infectious diseases are given to target the body’s innate and adaptive immune systems. In most cases, the potency of a live virus vaccine (LVV) is the most critical measurement of efficacy, though in some cases the quantity of surface antigen on the virus is an equally critical quality attribute. Existing methods to measure the potency of viruses include plaque and TCID50 assays, both of which have very long lead times and cannot provide real time information on the quality of the vaccine during large-scale manufacturing. Here, we report the evaluation of LumaCyte’s Radiance Laser Force Cytology platform as a new way to measure the potency of LVVs in upstream biomanufacturing process in real time and compare this to traditional TCID50 potency. We also assess this new platform as a way to detect adventitious agents, which is a regulatory expectation for the release of commercial vaccines. In both applications, we report the ability to obtain expedited and relevant potency information with strong correlation to release potency methods. Together, our data propose the application of Laser Force Cytology as a valuable process analytical technology (PAT) for the timely measurement of critical quality attributes of LVVs