7 research outputs found

    IRM moleculaire a base de xenon hyperpolarise par laser

    Get PDF
    Magnetic Resonance Imaging (MRI) has a high importance in medicine as it enables the observation of the organs inside the body without the use of radiative or invasive techniques. However it is known to suffer from poor sensitivity. To circumvent this limitation, a key solution resides in the use of hyperpolarized species. Among the entities with which we can drastically increase nuclear polarization, xenon has very specific properties through its interactions with its close environment that lead to a wide chemical shift bandwidth. The goal is thus to use it as a tracer. This PhD thesis focuses on the concept of 129Xe MRI-based sensors for the detection of biological events. In this approach, hyperpolarized xenon is vectorized to biological targets via functionalized host systems, and then localized thanks to fast dedicated MRI sequences. The conception and set-up of a spin-exchange optical pumping device is first described. Then studies about the interaction of the hyperpolarized noble gas with new cryptophanes susceptible to constitute powerful host molecules are detailed. Also the implementation of recent MRI sequences optimized for the transient character of the hyperpolarization and taking profit of the xenon in-out exchange is described. Applications of this approach for the detection of metallic ions and cellular receptors are studied. Finally, our first in vivo results on a small animal model are presented.L'imagerie par résonance magnétique (IRM) est une technique médicale incontournable permettant d'observer l'intérieur du corps de façon non invasive et non irradiante. L'IRM reste cependant connue pour souffrir d'une très faible sensibilité. Pour pallier cette limitation, une solution de choix est d'utiliser des espèces hyperpolarisées. Parmi les entités dont on peut augmenter la polarisation nucléaire et donc le signal RMN de plusieurs ordres de grandeur, le xénon se distingue par sa capacité à interagir avec son environnement proche, ce qui se traduit par une large gamme de déplacement chimique. L'objectif devient alors d'utiliser le xénon hyperpolarisé comme traceur. Le sujet de cette thèse porte sur le concept de sonde IRM 129Xe hyperpolarisé par laser pour la détection d'évènements biologiques. Dans cette approche, le xénon est vectorisé vers des cibles au moyen de systèmes hôtes fonctionnalisés puis détecté grâce à des séquences d'imagerie rapide. La conception et la mise au point d'un montage permettant la production de xénon hyperpolarisé par pompage optique par échange de spin sont décrites. Sont ensuite développées des études sur l'interaction du gaz rare avec de nouveaux cryptophanes susceptibles de constituer des molécules hôtes performantes. La mise en place de séquences IRM adaptées au caractère transitoire de l'hyperpolarisation et permettant l'utilisation optimale de l'échange du xénon dans les différents environnements est présentée. Des applications de biosondes IRM 129Xe pour la détection de cations métalliques et de récepteurs de surface cellulaire sont également décrites. Enfin, nos premiers résultats sur un modèle petit animal sont abordés

    IRM moléculaire à base de xénon hyperpolarisé par laser

    No full text
    L'imagerie par résonance magnétique (IRM) est une technique médicale incontournable permettant d'observer l' intérieur du corps de façon non invasive et non irradiante. L'IRM reste cependant connue pour souffrir d'une très faible sensibilité. Pour pallier cette limitation, une solution de choix est d utiliser des espèces hyperpolarisées. Parmi les entités dont on peut augmenter la polarisation nucléaire et donc le signal RMN de plusieurs ordres de grandeur, le xénon se distingue par sa capacité à interagir avec son environnement proche, ce qui se traduit par une large gamme de déplacement chimique. L objectif devient alors d utiliser le xénon hyperpolarisé comme traceur. Le sujet de cette thèse porte sur le concept de sonde IRM 129Xe hyperpolarisé par laser pour la détection d évènements biologiques. Dans cette approche, le xénon est vectorisé vers des cibles au moyen de systèmes hôtes fonctionnalisés puis détecté grâce à des séquences d imagerie rapide. La conception et la mise au point d un montage permettant la production de xénon hyperpolarisé par pompage optique par échange de spin sont décrites. Sont ensuite développées des études sur l interaction du gaz rare avec de nouveaux cryptophanes susceptibles de constituer des molécules hôtes performantes. La mise en place de séquences IRM adaptées au caractère transitoire de l hyperpolarisation et permettant l utilisation optimale de l échange du xénon dans les différents environnements est présentée. Des applications de biosondes IRM 129Xe pour la détection de cations métalliques et de récepteurs de surface cellulaire sont également décrites. Enfin, nos premiers résultats sur un modèle petit animal sont abordés.Magnetic Resonance Imaging (MRI) has a high importance in medicine as it enables the observation of the organs inside the body without the use of radiative or invasive techniques. However it is known to suffer from poor sensitivity. To circumvent this limitation, a key solution resides in the use of hyperpolarized species. Among the entities with which we can drastically increase nuclear polarization, xenon has very specific properties through its interactions with its close environment that lead to a wide chemical shift bandwidth. The goal is thus to use it as a tracer. This PhD thesis focuses on the concept of 129Xe MRI-based sensors for the detection of biological events. In this approach, hyperpolarized xenon is vectorized to biological targets via functionalized host systems, and then localized thanks to fast dedicated MRI sequences. The conception and set-up of a spin-exchange optical pumping device is first described. Then studies about the interaction of the hyperpolarized noble gas with new cryptophanes susceptible to constitute powerful host molecules are detailed. Also the implementation of recent MRI sequences optimized for the transient character of the hyperpolarization and taking profit of the xenon in-out exchange is described. Applications of this approach for the detection of metallic ions and cellular receptors are studied. Finally, our first in vivo results on a small animal model are presented.VERSAILLES-BU Sciences et IUT (786462101) / SudocSudocFranceF

    The first metal-free water-soluble cryptophane-111.

    No full text
    International audienceCryptophane-111 is one of the best candidates for (129)Xe MRI-based applications. Herein, we report the first metal-free and water-soluble cryptophane-111 core which involves an efficient and unusual post-synthetic sulfonation procedure

    Smart Detection of Toxic Metal Ions, Pb2+ and Cd2+, Using a 129Xe NMR-Based Sensor

    No full text
    International audienceAn approach for sensitive magnetic resonance detection of metal cations is proposed. Combining the use of hyperpolarized 129Xe NMR and of a cage-molecule functionalized by a ligand able to chelate different cations, we show that simultaneous detection of lead, zinc, and cadmium ions at nanomolar concentration is possible in short time, thanks to fast MRI sequences based on the HyperCEST scheme

    A Sensitive Zinc-Activated 129Xe MRI Probe

    Get PDF
    International audienceXenon capsule: A smart 129Xe NMR-based sensor of Zn2+ ions for magnetic resonance imaging (MRI) is proposed. The resonance frequency of xenon encapsulated in a cryptophane that bears a nitrilotriacetic ligand moiety varies when Zn2+ ions are present in solution (see picture). With hyper-polarized gas, such a construct enables detection of 100 nM zinc in one xenon batch, a threshold 300 times lower than achieved with gadolinium chelates

    Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR: The transferrin case

    No full text
    International audienceFor detection of biological events in vitro, sensors using hyperpolarized 129Xe NMR can become a powerful tool, provided the approach can bridge the gap in sensitivity. Here we propose constructs based on the non-selective grafting of cryptophane precursors on holo-transferrin. This biological system was chosen because there are many receptors on the cell surface, and endocytosis further increases this density. The study of these biosensors with K562 cell suspensions via fluorescence microscopy and 129Xe NMR indicates a strong interaction, as well as interesting features such as the capacity of xenon to enter the cryptophane even when the biosensor is endocytosed, while keeping a high level of polarization. Despite a lack of specificity for transferrin receptors, undoubtedly due to the hydrophobic character of the cryptophane moiety that attracts the biosensor into the cell membrane, these biosensors allow the first in-cell probing of biological events using hyperpolarized xenon
    corecore