19 research outputs found
Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood
The nutritional environment to which animals are exposed in early life can lead to epigenetic changes in the genome that influence the risk of obesity in later life. Here, we demonstrate that the fibroblast growth factor-21 gene (Fgf21) is subject to peroxisome proliferator-activated receptor (PPAR) α–dependent DNA demethylation in the liver during the postnatal period. Reductions in Fgf21 methylation can be enhanced via pharmacologic activation of PPARα during the suckling period. We also reveal that the DNA methylation status of Fgf21, once established in early life, is relatively stable and persists into adulthood. Reduced DNA methylation is associated with enhanced induction of hepatic FGF21 expression after PPARα activation, which may partly explain the attenuation of diet-induced obesity in adulthood. We propose that Fgf21 methylation represents a form of epigenetic memory that persists into adulthood, and it may have a role in the developmental programming of obesity
Clinical Characteristics of Patients with SARS-CoV-2 N501Y Variants in General Practitioner Clinic in Japan
The clinical characteristics of patients with N501Y mutation in SARS-CoV-2 variants (N501YV) is not fully understood, especially in the setting of general practice. In this retrospective cohort study, COVID-19 patients admitted to one general practitioner clinic between 26 March and 26 May 2021 were retrospectively analyzed. The characteristics, clinical symptoms and radiological findings before treatment were compared between N501YV and wild-type 501N. Twenty-eight patients were classified as wild-type 501N and 24 as N501YV. The mean (±standard deviation) age was 37.4 (±16.1) years, with no significant difference between groups. Among clinical symptoms, prevalence of fever of 38 degrees Celsius (°C) or higher was significantly higher in the N501YV group than in the wild-type 501N group (p = 0.001). Multivariate analysis showed that fever of 38 °C or higher remained significantly associated with N501YV (adjust odds ratio [aOR]: 6.07, 95% confidence interval [CI]: 1.68 to 21.94). For radiological findings, the lung involvement area was significantly larger in patients infected with N501YV (p = 0.013). In conclusion, in the N501YV group, fever of 38 °C or higher and extensive pneumonia were more frequently observed compared to the wild-type 501N group. There was no significant difference in terms of other demographics and clinical symptoms
A novel immunotoxin reveals a new role for CD321 in endothelial cells
<div><p>There are currently several antibody therapies that directly target tumors, and antibody-drug conjugates represent a novel moiety as next generation therapeutics. Here, we used a unique screening probe, DT3C, to identify functional antibodies that recognized surface molecules and functional epitopes, and which provided toxin delivery capability. Accordingly, we generated the 90G4 antibody, which induced DT3C-dependent cytotoxicity in endothelial cells. Molecular analysis revealed that 90G4 recognized CD321, a protein localized at tight junctions. Although CD321 plays a pivotal role in inflammation and lymphocyte trans-endothelial migration, little is known about its mechanism of action in endothelial cells. Targeting of CD321 by the 90G4 immunotoxin induced cell death. Moreover, 90G4 immunotoxin caused cytotoxicity primarily in migratory endothelial cells, but not in those forming sheets, suggesting a critical role for CD321 in tumor angiogenesis. We also found that hypoxia triggered redistribution of CD321 to a punctate localization on the basal side of cells, resulting in functional impairment of tight junctions and increased motility. Thus, our findings raise the intriguing possibility that endothelial CD321 presented cellular localization in tight junction as well as multifunctional dynamics in several conditions, leading to illuminate the importance of widely-expressed CD321 as a potential target for antitumor therapy.</p></div
Targeted cytotoxicity of the 90G4 immunotoxin in migratory cells.
<p>Live imaging of 90G4 immunotoxin administrated either (A–C) concomitantly or (D–F) one day after SVEC4-10 cell seeding. For each condition, samples were seeded in triplicate. (B, E) Phase contrast images were taken every 3 h and analyzed to calculate confluency (%). Values and error bars correspond to mean and standard error, respectively. (C, F) Images were taken at the indicated time during live imaging.</p
90G4 monoclonal antibody recognizes the CD321 antigen.
<p>(A) Expression profile in endothelial cell lines. Indicated endothelial cell lines were tested by staining with control (gray) or 90G4 antibodies (black). Data of FITC fluorescent intensity (FL1) indicated in histogram. Data presents three independent experiments. (B) Biochemical profiling of the molecular weight of the putative antigen. SVEC4-10 cells were surface-biotinylated with Sulfo-NHS-Biotin and lysed in NP40 buffer, followed by immunoprecipitation with 90G4 or IgG2a, к control antibodies. After SDS-polyacrylamide gel electrophoresis (PAGE), the putative antigen was visualized by probing the streptavidin-HRP (Str-HRP) conjugate by chemiluminescence. The molecular weight of the detected protein was 35 kDa. (C) Identification of 90G4 antigen. Amino acid sequence of CD321 proteins were indicated with the two of underlined peptide sequences that are detected by LC-MS/MS analysis. (D) Specific immunoreactivity of 90G4 antibody against CD321. The expression vectors encoding CD321, CD322, or CD323 cDNA were transfected into CHO cells, which were then subjected to flow cytometry analysis. Data are presented in contour plot (top) or overlaid in histogram (bottom) of FITC signal intensity of sample (black) or control (gray).</p
Redistribution of CD321 during hypoxia.
<p>Immunocytochemical analysis of CD321 localization. SVEC4-10 cells were incubated under normoxic (pO<sub>2</sub> = 20%) or hypoxic (pO<sub>2</sub> = 1%) conditions for three days. Cells were fixed and stained with DAPI (blue), 90G4 antibody (green), and anti-SM22α antibody (red). Images were taken at (A) low or (B) high magnification. Scale bar; 50 μm.</p
90G4 monoclonal antibody displays immunotoxin activity.
<p>(A) Principle of the DT3C-mediated immunotoxin screening. The antibody forms an immunocomplex with DT3C via the Fc-binding domain. If the immunocomplex bound to the cell surface is internalized with the target antigen, cleavage of the DT3C catalytic domain by the intracellular furin protease results in cytotoxicity. DT3C with either purified 90G4 or isotype control (iso; IgG2a, к) antibodies was administered to (B) MS-1 or (C) SVEC4-10 cells. After three days, cell viability was measured with the WST-1 assay. Data represent the mean value of triplicate samples for three independent experiments. Error bars correspond to the standard error of the mean.</p
Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood
The nutritional environment to which animals are exposed in early life can lead to epigenetic changes in the genome that influence the risk of obesity in later life. Here, we demonstrate that the fibroblast growth factor-21 gene (Fgf21) is subject to peroxisome proliferator-activated receptor (PPAR) α–dependent DNA demethylation in the liver during the postnatal period. Reductions in Fgf21 methylation can be enhanced via pharmacologic activation of PPARα during the suckling period. We also reveal that the DNA methylation status of Fgf21, once established in early life, is relatively stable and persists into adulthood. Reduced DNA methylation is associated with enhanced induction of hepatic FGF21 expression after PPARα activation, which may partly explain the attenuation of diet-induced obesity in adulthood. We propose that Fgf21 methylation represents a form of epigenetic memory that persists into adulthood, and it may have a role in the developmental programming of obesity