23 research outputs found

    Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security

    Get PDF
    The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.1 to 25.1%, which compares to theoretical expectation of 25%. A rare and favorable haplotype (GT) with 0.4% frequency in gene bank identified on chromosome 6D minimized grain yield (GY) loss under heat stress without GY penalty under irrigated conditions. More specifically, the ‘T’ allele of the haplotype GT originated in Aegilops tauschii and was absent in all elite lines used in study. In silico analysis of the SNP showed hits with a candidate gene coding for isoflavone reductase IRL-like protein in Ae. tauschii. Rare haplotypes were also identified on chromosomes 1A, 6A and 2B effective against abiotic/biotic stresses. Results demonstrate positive contributions of exotic germplasm to PBLs derived from crosses of exotics with CIMMYT’s best elite lines. This is a major impact-oriented pre-breeding effort at CIMMYT, resulting in large-scale development of PBLs for deployment in breeding programs addressing food security under climate change scenarios

    Multi-Trait and Multi-Environment QTL Analyses for Resistance to Wheat Diseases

    Get PDF
    BACKGROUND: Stripe rust, leaf rust, tan spot, and Karnal bunt are economically significant diseases impacting wheat production. The objectives of this study were to identify quantitative trait loci for resistance to these diseases in a recombinant inbred line (RIL) from a cross HD29/WH542, and to evaluate the evidence for the presence loci on chromosome region conferring multiple disease resistance. METHODOLOGY/PRINCIPAL FINDINGS: The RIL population was evaluated for four diseases and genotyped with DNA markers. Multi-trait (MT) analysis revealed thirteen QTLs on nine chromosomes, significantly associated with resistance. Phenotypic variation explained by all significant QTLs for KB, TS, Yr, Lr diseases were 57%, 55%, 38% and 22%, respectively. Marginal trait analysis identified the most significant QTLs for resistance to KB on chromosomes 1BS, 2DS, 3BS, 4BL, 5BL, and 5DL. Chromosomes 3AS and 4BL showed significant association with TS resistance. Significant QTLs for Yr resistance were identified on chromosomes 2AS, 4BL and 5BL, while Lr was significant on 6DS. MT analysis revealed that all the QTLs except 3BL significantly reduce KB and was contributed from parent HD29 while all resistant QTLs for TS except on chromosomes 2DS.1, 2DS.2 and 3BL came from WH542. Five resistant QTLs for Yr and six for Lr were contributed from parents WH542 and HD29 respectively. Chromosome region on 4BL showed significant association to KB, TS, and Yr in the population. The multi environment analysis for KB identified three putative QTLs of which two new QTLs, mapped on chromosomes 3BS and 5DL explained 10 and 20% of the phenotypic variation, respectively. CONCLUSIONS/SIGNIFICANCE: This study revealed that MT analysis is an effective tool for detection of multi-trait QTLs for disease resistance. This approach is a more effective and practical than individual QTL mapping analyses. MT analysis identified RILs that combine resistance to multiple diseases from parents WH542 and/or HD29

    Genome-Wide Association Study of Grain Architecture in Wild Wheat Aegilops tauschii

    No full text
    Aegilops tauschii, the D-genome progenitor of Triticum aestivum, encompasses huge diversity for various traits of potential economic importance such as yield, biotic and abiotic stress tolerance, quality and nutrition. In the present study, variation for grain size in Ae. tauschii germplasm was studied and its genetic basis dissected using genome-wide association study (GWAS). Grain length, width, and weight evaluated in 177 Ae. tauschii accessions over 3 years showed near normal distribution with 1.74-, 1.75-, and 2.82-fold variation, respectively. These lines were genetically characterized using genotyping-by-sequencing (GBS) protocol that produced 11,489 single nucleotide polymorphic (SNP) markers. Genetic diversity analysis revealed the presence of two distinct subgroups (designated as lineage 1 and 2) in Ae. tauschii. Based on GBS markers, the genetic similarity was calculated between the accessions and GWAS was conducted using 114 non-redundant accessions and 5,249 SNP markers. A total of 17 SNPs associated with grain size traits distributed over all the seven chromosomes were revealed with 6D, 5D, and 2D harboring most significant marker–trait associations. Some of the chromosomal regions such as 6D_66.4–71.1 cM, 1D_143.5–156.7 cM, and 2D_89.9–92.5 cM had associations with multiple traits. Candidate genes associated with cell division and differentiation were identified for some of the associated SNP markers. Further efforts to validate these loci will help to understand their role in determining grain size and allelic diversity in current germplasm and its effect on grain size upon transfer to bread wheat background

    Marker Assisted Transfer of Stripe Rust and Stem Rust Resistance Genes into Four Wheat Cultivars

    No full text
    Three rust diseases namely; stem rust caused by Puccinia graminis f. sp. tritici (Pgt), leaf rust caused by Puccinia triticina (Pt), and stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), are the most common fungal diseases of wheat (Triticum aestivum L.) and cause significant yield losses worldwide including Australia. Recently characterized stripe rust resistance genes Yr51 and Yr57 are effective against pre- and post-2002 Pst pathotypes in Australia. Similarly, stem rust resistance genes Sr22, Sr26, and Sr50 are effective against the Pgt pathotype TTKSK (Ug99) and its derivatives in addition to commercially important Australian pathotypes. Effectiveness of these genes make them good candidates for combining with known pleiotropic adult plant resistance (PAPR) genes to achieve durable resistance against three rust pathogens. This study was planned to transfer rust resistance genes Yr51, Yr57, Sr22, Sr26, and Sr50 into two Australian (Gladius and Livingston) and two Indian (PBW550 and DBW17) wheat cultivars through marker assisted selection (MAS). These cultivars also carry other rust resistance genes: Gladius carries Lr37/Yr17/Sr38 and Sr24/Lr24; Livingston carries Lr34/Yr18/Sr57, Lr37/Yr17/Sr38, and Sr2; PBW550 and DBW17 carry Lr34/Yr18/Sr57 and Lr26/Yr9/Sr31. Donor sources of Yr51 (AUS91456), Yr57 (AUS91463), Sr22 (Sr22/3*K441), Sr26 (Sr26 WA1), and Sr50 (Dra-1/Chinese Spring ph1b/2/3* Gabo) were crossed with each of the recurrent parents to produce backcross progenies. Markers linked to Yr51 (sun104), Yr57 (gwm389 and BS00062676), Sr22 (cssu22), Sr26 (Sr26#43), and Sr50 (Sr50-5p-F3, R2) were used for their MAS and markers csLV34 (Lr34/Yr18/Sr57), VENTRIUP-LN2 (Lr37/Yr17/Sr38), Sr24#12 (Sr24/Lr24), and csSr2 (Sr2) were used to select genes present in recurrent parents. Progenies of selected individuals were grown and selected under field conditions for plant type and adult plant rust responses. Final selections were genotyped with the relevant markers. Backcross derivatives of these genes were distributed to breeding companies for use as resistance donors

    Development of high yielding IR64 × Oryza rufipogon (Griff.) introgression lines and identification of introgressed alien chromosome segments using SSR markers

    No full text
    Modern rice varieties that ushered in the green revolution brought about dramatic increase in rice production worldwide but at the cost of genetic diversity at the farmers'fields. The wild species germplasm can be used for broadening the genetic base and improving productivity. Mining of alleles at productivity QTL from related wild species under simultaneous backcrossing and evaluation, accompanied by molecular marker analysis has emerged as an effective plant breeding strategy for utilization of wild species germplasm. In the present study, a limited backcross strategy was used to introgress QTL associated with yield and yield components from Oryza rufipogon (acc. IRGC 105491) to cultivated rice, O. sativa cv IR64. A set of 12 BC<SUB>2</SUB>F<SUB>6</SUB> progenies, selected from among more than 100 BC<SUB>2</SUB>F<SUB>5</SUB> progenies were evaluated for yield and yield components. For plant height, days to 50% flowering and tillers/plant, the introgression lines did not show any significant change compared to the recurrent parent IR64. For yield, 9 of the 12 introgression lines showed significantly higher yield (19-38%) than the recurrent parent IR64. Four of these lines originating from a common lineage showed higher yield due to increase in grain weight and another three also from a common lineage showed yield increase due to increase in grain number per panicle. For analyzing the introgression at molecular level all the 12 lines were analyzed for 259 polymorphic SSR markers. Of the total 259 SSR markers analyzed, only 18 (7.0%) showed introgression from O. rufipogon for chromosomes 1, 2, 3, 5, 6 and 11. Graphical genotypes have been prepared for each line and association between the introgression regions and the traits that increased yield is reported. Based on marker trait association it appears that some of the QTL are stable across the environments and genetic backgrounds and can be exploited universally

    Yield-Enhancing Heterotic QTL Transferred from Wild Species to Cultivated Rice <i>Oryza sativa</i> L

    No full text
    <div><p>Utilization of “hidden genes” from wild species has emerged as a novel option for enrichment of genetic diversity for productivity traits. In rice we have generated more than 2000 lines having introgression from ‘A’ genome-donor wild species of rice in the genetic background of popular varieties PR114 and Pusa44 were developed. Out of these, based on agronomic acceptability, 318 lines were used for developing rice hybrids to assess the effect of introgressions in heterozygous state. These introgression lines and their recurrent parents, possessing fertility restoration ability for wild abortive (WA) cytoplasm, were crossed with cytoplasmic male sterile (CMS) line PMS17A to develop hybrids. Hybrids developed from recurrent parents were used as checks to compare the performance of 318 hybrids developed by hybridizing alien introgression lines with PMS17A. Seventeen hybrids expressed a significant increase in yield and its component traits over check hybrids. These 17 hybrids were re-evaluated in large-size replicated plots. Of these, four hybrids, viz., ILH299, ILH326, ILH867 and ILH901, having introgressions from <i>O. rufipogon</i> and two hybrids (ILH921 and ILH951) having introgressions from <i>O. nivara</i> showed significant heterosis over parental introgression line, recurrent parents and check hybrids for grain yield-related traits. Alien introgressions were detected in the lines taken as male parents for developing six superior hybrids, using a set of 100 polymorphic simple sequence repeat (SSR) markers. Percent introgression showed a range of 2.24 from in <i>O. nivara</i> to 7.66 from <i>O. rufipogon</i>. The introgressed regions and their putative association with yield components in hybrids is reported and discussed.</p></div

    Mean values of the ILHs for important agronomic traits and extent of heterosis (%) over parents check hybrids and recurrent parents in 17 hybrids.

    No full text
    <p>*, **significant at <i>P≀0.05</i> and <i>P≀0.01</i>, respectively.</p><p>CH1 = PMS17A/Pusa44; CH2 = PMS17A/PR114;</p><p>∧ILH developed from Pusa44 derived IL.</p>∌<p>ILH developed from PR114 derived IL;</p>a<p>details of the hybrids are presented in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0096939#pone-0096939-t001" target="_blank">table 1</a>.</p

    Performance of 17 introgression lines for important yield contributing traits.

    No full text
    <p><sup>a</sup> Significantly higher and <sup>c</sup> lower than the recurrent parent Pusa 44 or PR114 at <i>P</i>≀0.01.</p><p><sup>b</sup> Significantly higher and <sup>d</sup> lower than the recurrent parent Pusa 44 or PR114 at <i>P</i>≀0.05.</p

    Mean grain yield and standard heterosis of 17 ILHs evaluated in the year 2008.

    No full text
    <p>*, **significant at P≀0.05 and P≀0.01, respectively. IRGC and CR refer to International Rice Germplasm Centre and CRRI Cuttack, accession numbers, respectively.</p

    Graphical genotypes of six alien introgression lines generated after analyzing these with polymorphic SSR markers.

    No full text
    <p>Regions in blue are homozygous alien segments and gray are heterozygous alien segments introgressed from <i>O. rufipogon</i> in IL299, IL326, IL867 and IL901 and <i>O. nivara</i> in IL901 and IL951. Numbers on the right of linkage group are the cM distances as per Temnykh et al <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0096939#pone.0096939-Temnykh1" target="_blank">[32]</a>. Numbers at the bottom are the chromosomes. Details of the ILHs in parentheses are presented in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0096939#pone-0096939-t001" target="_blank">Table 1</a>.</p
    corecore