809 research outputs found

    Boson-fermion mapping of collective fermion-pair algebras

    Get PDF
    We construct finite Dyson boson-fermion mappings of general collective algebras extended by single-fermion operators. A key element in the construction is the implementation of a similarity transformation which transforms boson-fermion images obtained directly from the supercoherent state method. In addition to the general construction, we give detailed applications to SO(2N), SU(l+1), SO(5), and SO(8) algebras.Comment: 22 pages, latex, no figure

    SDG fermion-pair algebraic SO(12) and Sp(10) models and their boson realizations

    Full text link
    It is shown how the boson mapping formalism may be applied as a useful many-body tool to solve a fermion problem. This is done in the context of generalized Ginocchio models for which we introduce S-, D-, and G-pairs of fermions and subsequently construct the sdg-boson realizations of the generalized Dyson type. The constructed SO(12) and Sp(10) fermion models are solved beyond the explicit symmetry limits. Phase transitions to rotational structures are obtained, also in situations where there is no underlying SU(3) symmetry.Comment: 25 LaTeX pages, 4 uuencoded postscript figures included, Preprint IFT/8/94 & STPHY-TH/94-

    Review of Studies in Public Regulation, by G. Fromm

    Get PDF

    Spectra and binding energy predictions of chiral interactions for 7Li

    Get PDF
    Using the no-core shell model approach, we report on the first results for 7Li based on the next-to-next-to-leading order chiral nuclear interaction. Both, two-nucleon and three-nucleon interactions are taken into account. We show that the p-shell nuclei are sensitive to the subleading parts of the chiral interactions including three-nucleon forces. Though chiral interactions are soft, we do not observe overbinding for this p-shell nucleus and find a realistic description for the binding energy, excitation spectrum and radius.Comment: 12 pages, 12 figure

    Ab-initio coupled-cluster effective interactions for the shell model: Application to neutron-rich oxygen and carbon isotopes

    Get PDF
    We derive and compute effective valence-space shell-model interactions from ab-initio coupled-cluster theory and apply them to open-shell and neutron-rich oxygen and carbon isotopes. Our shell-model interactions are based on nucleon-nucleon and three-nucleon forces from chiral effective-field theory. We compute the energies of ground and low-lying states, and find good agreement with experiment. In particular our calculations are consistent with the N=14, 16 shell closures in oxygen-22 and oxygen-24, while for carbon-20 the corresponding N=14 closure is weaker. We find good agreement between our coupled-cluster effective-interaction results with those obtained from standard single-reference coupled-cluster calculations for up to eight valence neutrons

    Effective Operator Treatment of the Anharmonic Oscillator

    Full text link
    We analyse the one dimensional quartic oscillator using the effective operator methodology of Lee and Suzuki. We reproduce known results for low lying energy eigenvalues.Comment: 9 Pages, Extended version with new references. To appear in Phys.ReV.
    corecore