60 research outputs found

    Symposium Report The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function

    Get PDF
    ABSTRACT This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b 5 . First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b 5 and 17a-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b 5 . The role of b 5 was also shown in vivo by selective hepatic knockout of b 5 from mice expressing CYP3A4 and CYP2D6; the lack of b 5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to "helicopter" above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function

    The peatland map of Europe

    Get PDF
    Based on the ‘European Mires Book’ of the International Mire Conservation Group (IMCG), this article provides a composite map of national datasets as the first comprehensive peatland map for the whole of Europe. We also present estimates of the extent of peatlands and mires in each European country individually and for the entire continent. A minimum peat thickness criterion has not been strictly applied, to allow for (often historically determined) country-specific definitions. Our ‘peatland’ concept includes all ‘mires’, which are peatlands where peat is being formed. The map was constructed by merging national datasets in GIS while maintaining the mapping scales of the original input data. This ‘bottom-up’ approach indicates that the overall area of peatland in Europe is 593,727 km². Mires were found to cover more than 320,000 km² (around 54 % of the total peatland area). If shallow-peat lands (< 30 cm peat) in European Russia are also taken into account, the total peatland area in Europe is more than 1,000,000 km2, which is almost 10 % of the total surface area. Composite inventories of national peatland information, as presented here for Europe, may serve to identify gaps and priority areas for field survey, and help to cross-check and calibrate remote sensing based mapping approaches

    Komplexe des Uranyls mit phenolischen Liganden VI. Komplexe mit Koji- und Mekonsäure

    No full text

    Measurement of the optical properties of rat brain tissue using contact spatially resolved spectroscopy

    No full text
    Item does not contain fulltextBiophotonics: Photonic Solutions for Better Health Care IV: SPIE PHOTONICS EUROPE | 13-17 APRIL 201

    IL-40 is up-regulated in the synovial fluid and cartilage of osteoarthritis patients and contributes to the alteration of chondrocytes phenotype in vitro

    No full text
    Abstract Introduction IL-40 is a novel cytokine associated with autoimmune connective tissue disorders such as rheumatoid arthritis (RA) or Sjögren syndrome. We have previously shown an accumulation of IL-40 in the RA joint and its expression by immune cells and fibroblasts. Therefore, we aimed to assess the role of IL-40 in association with hyaline cartilage and chondrocyte activity. Methods Immunohistochemistry was employed to detect IL-40 in paired samples of loaded and unloaded regions of osteoarthritis (OA) cartilage (n=5). Synovial fluid IL-40 was analysed by ELISA in OA (n=31) and control individuals after knee injury (n=34). The impact of IL-40 on chondrocytes was tested in vitro. Results IL-40 was found in chondrocytes of the superficial zone of the OA cartilage, both in loaded and unloaded explants. Additionally, only biopsies from loaded explants showed significant IL-40 positivity in transitional zone chondrocytes. Levels of IL-40 were significantly elevated in the synovial fluid from OA patients compared to controls (p<0.0009) and correlated with synovial fluid leukocyte counts in OA (r=0.444, p=0.014). Chondrocytes exposed to IL-40 dose dependently increased in the secretion of pro-inflammatory cytokines IL-6 (p<0.0001) and IL-8 (p=0.004). Moreover, a dose dependent up-regulation of matrix degrading metalloproteinases MMP-1 (p=0.004), MMP-3 (p=0.031) and MMP-13 (p=0.0002) upon IL-40 treatment was observed in contrast to untreated chondrocytes. Conclusion This study is the first to demonstrate the accumulation of IL-40 in OA cartilage and its up-regulation in the synovial fluid of OA patients compared to controls. In addition, extracellular IL-40 appears to play a role in promoting inflammation and cartilage destruction by driving chondrocyte behaviour towards a more aggressive phenotype
    corecore