785 research outputs found
Excitonic instability and electric-field-induced phase transition towards a two dimensional exciton condensate
We present an InAs-GaSb-based system in which the electric-field tunability
of its 2D energy gap implies a transition towards a thermodynamically stable
excitonic condensed phase. Detailed calculations show a 3 meV BCS-like gap
appearing in a second-order phase transition with electric field. We find this
transition to be very sharp, solely due to exchange interaction, and so, the
exciton binding energy is greatly renormalized even at small condensate
densities. This density gradually increases with external field, thus enabling
the direct probe of the Bose-Einstein to BCS crossover.Comment: LaTex, 11 pages, 3 ps figures, To appear in PR
Current noise in long diffusive SNS junctions in the incoherent MAR regime
Spectral density of current fluctuations at zero frequency is calculated for
a long diffusive SNS junction with low-resistive interfaces. At low
temperature, T << Delta, the subgap shot noise approaches linear voltage
dependence, S=(2/ 3R)(eV + 2Delta), which is the sum of the shot noise of the
normal conductor and voltage independent excess noise. This result can also be
interpreted as the 1/3-suppressed Poisson noise for the effective charge q =
e(1+2Delta/eV) transferred by incoherent multiple Andreev reflections (MAR). At
higher temperatures, anomalies of the current noise develop at the gap
subharmonics, eV = 2Delta/n. The crossover to the hot electron regime from the
MAR regime is analyzed in the limit of small applied voltages.Comment: improved version, to be published in Phys. Rev.
What you know can influence what you are going to know (especially for older adults)
Stimuli related to an individual's knowledge/experience are often more memorable than abstract stimuli, particularly for older adults. This has been found when material that is congruent with knowledge is contrasted with material that is incongruent with knowledge, but there is little research on a possible graded effect of congruency. The present study manipulated the degree of congruency of study material with participants’ knowledge. Young and older participants associated two famous names to nonfamous faces, where the similarity between the nonfamous faces and the real famous individuals varied. These associations were incrementally easier to remember as the name-face combinations became more congruent with prior knowledge, demonstrating a graded congruency effect, as opposed to an effect based simply on the presence or absence of associations to prior knowledge. Older adults tended to show greater susceptibility to the effect than young adults, with a significant age difference for extreme stimuli, in line with previous literature showing that schematic support in memory tasks particularly benefits older adults
Dynamical effects of an unconventional current-phase relation in YBCO dc-SQUIDs
The predominant d-wave pairing symmetry in high temperature superconductors
allows for a variety of current-phase relations in Josephson junctions, which
is to a certain degree fabrication controlled. In this letter we report on
direct experimental observations of the effects of a non-sinusoidal
current-phase dependence in YBCO dc-SQUIDs, which agree with the theoretical
description of the system.Comment: 4 pages, 4 ps figures, to apprear in Phys. Rev. Let
Engineering Superfluidity in Electron-Hole Double Layers
We show that band-structure effects are likely to prevent superfluidity in
semiconductor electron-hole double-layer systems. We suggest the possibility
that superfluidity could be realized by the application of uniaxial pressure
perpendicular to the electron and hole layers.Comment: 4 pages, includes 3 figure
Metal-Insulator oscillations in a Two-dimensional Electron-Hole system
The electrical transport properties of a bipolar InAs/GaSb system have been
studied in magnetic field. The resistivity oscillates between insulating and
metallic behaviour while the quantum Hall effect shows a digital character
oscillating from 0 to 1 conducatance quantum e^2/h. The insulating behaviour is
attributed to the formation of a total energy gap in the system. A novel looped
edge state picture is proposed associated with the appearance of a voltage
between Hall probes which is symmetric on magnetic field reversal.Comment: 4 pages, 5 Postscript figures: revised versio
Coulomb screening in mesoscopic noise: a kinetic approach
Coulomb screening, together with degeneracy, is characteristic of the
metallic electron gas. While there is little trace of its effects in transport
and noise in the bulk, at mesoscopic scales the electronic fluctuations start
to show appreciable Coulomb correlations. Within a strictly standard Boltzmann
and Fermi-liquid framework, we analyze these phenomena and their relation to
the mesoscopic fluctuation-dissipation theorem, which we prove. We identify two
distinct screening mechanisms for mesoscopic fluctuations. One is the
self-consistent response of the contact potential in a non-uniform system. The
other couples to scattering, and is an exclusively non-equilibrium process.
Contact-potential effects renormalize all thermal fluctuations, at all scales.
Collisional effects are relatively short-ranged and modify non-equilibrium
noise. We discuss ways to detect these differences experimentally.Comment: Source: REVTEX. 16 pp.; 7 Postscript figs. Accepted for publication
in J. Phys.: Cond. Ma
Non-equilibrium current noise in mesoscopic disordered SNS junctions
Current noise in superconductor-normal metal-superconductor (SNS) junctions
is calculated within the scattering theory of multiple Andreev reflections
(MAR). It is shown that the noise exhibits subharmonic gap singularities at
, both in single-mode junctions with arbitrary
transparency and in multi-mode disordered junctions. The subharmonic
structure is superimposed with monotonic increase of the effective transferred
charge with decreasing bias voltage. Other features of the
noise include a step-like increase of in junctions with small , and a
divergence at small voltages and excess noise , where is the excess current, at large voltages, in
junctions with diffusive transport.Comment: 5 page
Long-Range Coulomb Interaction and the Crossover between Quantum and Shot Noise in Diffusive Conductors
Frequency-dependent nonequilibrium noise in quantum-coherent diffusive
conductors is calculated with account taken of long-range Coulomb interaction.
For long and narrow contacts with strong external screening the crossover
between quantum and shot noise takes place at frequencies much smaller than the
voltage drop across the contact. We also show that under certain frequency
limitations, the semiclassical and quantum-coherent approaches to shot noise
are mathematically equivalent.Comment: 13 pages, RevTex, 7 ps figures, more details of derivation give
Full Counting Statistics of Multiple Andreev Reflections in incoherent diffusive superconducting junctions
We present a theory for the full distribution of current fluctuations in
incoherent diffusive superconducting junctions, subjected to a voltage bias.
This theory of full counting statistics of incoherent multiple Andreev
reflections is valid for arbitrary applied voltage. We present a detailed
discussion of the properties of the first four cumulants as well as the low and
high voltage regimes of the full counting statistics. The work is an extension
of the results of Pilgram and the author, Phys. Rev. Lett. 94, 086806 (2005).Comment: Included in special issue Spin Physics of Superconducting
heterostructures of Applied Physics A: Materials Science & Processin
- …