496 research outputs found

    Unconventional cosmology on the (thick) brane

    Full text link
    We consider the cosmology of a thick codimension 1 brane. We obtain the matching conditions leading to the cosmological evolution equations and show that when one includes matter with a pressure component along the extra dimension in the brane energy-momentum tensor, the cosmology is of non-standard type. In particular one can get acceleration when a dust of non-relativistic matter particles is the only source for the (modified) Friedman equation. Our equations would seem to violate the conservation of energy-momentum from a 4D perspective, but in 5D the energy-momentum is conserved. One could write down an effective conserved 4D energy-momentum tensor attaching a ``dark energy'' component to the energy-momentum tensor of matter that has pressure along the extra dimension. This extra component could, on a cosmological scale, be interpreted as matter-coupled quintessence. We comment on the effective 4D description of this effect in terms of the time evolution of a scalar field (the 5D radion) coupled to this kind of matter.Comment: 9 pages, v2. eq.(17) corrected, comments on effective theory change

    Higher codimension braneworlds from intersecting branes

    Full text link
    We study the matching conditions of intersecting brane worlds in Lovelock gravity in arbitrary dimension. We show that intersecting various codimension 1 and/or codimension 2 branes one can find solutions that represent energy-momentum densities localized in the intersection, providing thus the first examples of infinitesimally thin higher codimension braneworlds that are free of singularities and where the backreaction of the brane in the background is fully taken into account.Comment: 20 pages; v2. references and comments added to match the published versio

    Gravity on codimension 2 brane worlds

    Full text link
    We compute the matching conditions for a general thick codimension 2 brane, a necessary previous step towards the investigation of gravitational phenomena in codimension 2 braneworlds. We show that, provided the brane is weakly curved, they are specified by the integral in the extra dimensions of the brane energy-momentum, independently of its detailed internal structure. These general matching conditions can then be used as boundary conditions for the bulk solution. By evaluating Einstein equations at the brane boundary we are able to write an evolution equation for the induced metric on the brane depending only on physical brane parameters and the bulk energy-momentum tensor. We particularise to a cosmological metric and show that a realistic cosmology can be obtained in the simplest case of having just a non-zero cosmological constant in the bulk. We point out several parallelisms between this case and the codimension 1 brane worlds in an AdS space.Comment: 24 page

    Brane-bulk matter relation for a purely conical codimension-2 brane world

    Full text link
    We study gravity on an infinitely thin codimension-2 brane world, with purely conical singularities and in the presence of an induced gravity term on the brane. We show that in this approximation, the energy momentum tensor of the bulk is strongly related to the energy momentum tensor of the brane and thus the gravity dynamics on the brane are induced by the bulk content. This is in contrast with the gravity dynamics on a codimension-1 brane. We show how this strong result is relaxed after including a Gauss-Bonnet term in the bulk.Comment: 12 pages, mistake corrected, references adde

    Evolution of Thick Walls in Curved Spacetimes

    Full text link
    We generalize our previous thick shell formalism to incorporate any codimension-1 thick wall with a peculiar velocity and proper thickness bounded by arbitrary spacetimes. Within this new formulation we obtain the equation of motion of a spherically symmetric dust thick shell immersed in vacuum as well as in Friedmann-Robertson-Walker spacetimes.Comment: 8 pages, 1 figur

    Prognostic Factors for Postoperative Chronic Pain after Knee or Hip Replacement in Patients with Knee or Hip Osteoarthritis: An Umbrella Review

    Get PDF
    Knee and hip osteoarthritis are highly prevalent in the older population. Management of osteoarthritis-related pain includes conservative or surgical treatment. Although knee or hip joint replacement is associated with positive outcomes, up to 30% of patients report postoperative pain in the first two years. This study aimed to synthesize current evidence on prognostic factors for predicting postoperative pain after knee or hip replacement. An umbrella review of systematic reviews was conducted to summarize the magnitude and quality of the evidence for prognostic preoperative factors predictive of postoperative chronic pain (&gt;6 months after surgery) in patients who had received knee or hip replacement. Searches were conducted in MEDLINE, CINAHL, PubMed, PEDro, SCOPUS, Cochrane Library, and Web of Science databases from inception up to 5 August 2022 for reviews published in the English language. A narrative synthesis, a risk of bias assessment, and an evaluation of the evidence confidence were performed. Eighteen reviews (nine on knee surgery, four on hip replacement, and seven on both hip/knee replacement) were included. From 44 potential preoperative prognostic factors, just 20 were judged as having high or moderate confidence for robust findings. Race, opioid use, preoperative function, neuropathic pain symptoms, pain catastrophizing, anxiety, other pain sites, fear of movement, social support, preoperative pain, mental health, coping strategies, central sensitization-associated symptoms, and depression had high/moderate confidence for an association with postoperative chronic pain. Some comorbidities such as heart disease, stroke, lung disease, nervous system disorders, and poor circulation had high/moderate confidence for no association with postoperative chronic pain. This review has identified multiple preoperative factors (i.e., sociodemographic, clinical, psychological, cognitive) associated with postoperative chronic pain after knee or hip replacement. These factors may be used for identifying individuals at a risk of developing postoperative chronic pain. Further research can investigate the impact of using such prognostic data on treatment decisions and patient outcomes.</p

    Flux Compactifications: Stability and Implications for Cosmology

    Full text link
    We study the dynamics of the size of an extra-dimensional manifold stabilised by fluxes. Inspecting the potential for the 4D field associated with this size (the radion), we obtain the conditions under which it can be stabilised and show that stable compactifications on hyperbolic manifolds necessarily have a negative four-dimensional cosmological constant, in contradiction with experimental observations. Assuming compactification on a positively curved (spherical) manifold we find that the radion has a mass of the order of the compactification scale, M_c, and Planck suppressed couplings. We also show that the model becomes unstable and the extra dimensions decompactify when the four-dimensional curvature is higher than a maximum value. This in particular sets an upper bound on the scale of inflation in these models: V_max \sim M_c^2 M_P^2, independently of whether the radion or other field is responsible for inflation. We comment on other possible contributions to the radion potential as well as finite temperature effects and their impact on the bounds obtained.Comment: 16 pages, 1 figure, LaTeX; v2: typos fixed and references adde

    Modified-Source Gravity and Cosmological Structure Formation

    Full text link
    One way to account for the acceleration of the universe is to modify general relativity, rather than introducing dark energy. Typically, such modifications introduce new degrees of freedom. It is interesting to consider models with no new degrees of freedom, but with a modified dependence on the conventional energy-momentum tensor; the Palatini formulation of f(R)f(R) theories is one example. Such theories offer an interesting testing ground for investigations of cosmological modified gravity. In this paper we study the evolution of structure in these ``modified-source gravity'' theories. In the linear regime, density perturbations exhibit scale dependent runaway growth at late times and, in particular, a mode of a given wavenumber goes nonlinear at a higher redshift than in the standard Λ\LambdaCDM model. We discuss the implications of this behavior and why there are reasons to expect that the growth will be cut off in the nonlinear regime. Assuming that this holds in a full nonlinear analysis, we briefly describe how upcoming measurements may probe the differences between the modified theory and the standard Λ\LambdaCDM model.Comment: 22 pages, 6 figures, uses iopart styl

    Adrenergic Modulation With Photochromic Ligands

    Get PDF
    © 2020 Wiley-VCH GmbH Adrenoceptors are ubiquitous and mediate important autonomic functions as well as modulating arousal, cognition, and pain on a central level. Understanding these physiological processes and their underlying neural circuits requires manipulating adrenergic neurotransmission with high spatio-temporal precision. Here we present a first generation of photochromic ligands (adrenoswitches) obtained via azologization of a class of cyclic amidines related to the known ligand clonidine. Their pharmacology, photochromism, bioavailability, and lack of toxicity allow for broad biological applications, as demonstrated by controlling locomotion in zebrafish and pupillary responses in mice

    The emotional movie database (EMDB): a self-report and psychophysiological study

    Get PDF
    Film clips are an important tool for evoking emotional responses in the laboratory. When compared with other emotionally potent visual stimuli (e.g., pictures), film clips seem to be more effective in eliciting emotions for longer periods of time at both the subjective and physiological levels. The main objective of the present study was to develop a new database of affective film clips without auditory content, based on a dimensional approach to emotional stimuli (valence, arousal and dominance). The study had three different phases: (1) the pre-selection and editing of 52 film clips (2) the self-report rating of these film clips by a sample of 113 participants and (3) psychophysiological assessment [skin conductance level (SCL) and the heart rate (HR)] on 32 volunteers. Film clips from different categories were selected to elicit emotional states from different quadrants of affective space. The results also showed that sustained exposure to the affective film clips resulted in a pattern of a SCL increase and HR deceleration in high arousal conditions (i.e., horror and erotic conditions). The resulting emotional movie database can reliably be used in research requiring the presentation of non-auditory film clips with different ratings of valence, arousal and dominance.Portuguese Foundation for Science and Technology with individual grants (SFRH/BD/41484/2007 and SFRH/BD/64355/2009
    corecore