One way to account for the acceleration of the universe is to modify general
relativity, rather than introducing dark energy. Typically, such modifications
introduce new degrees of freedom. It is interesting to consider models with no
new degrees of freedom, but with a modified dependence on the conventional
energy-momentum tensor; the Palatini formulation of f(R) theories is one
example. Such theories offer an interesting testing ground for investigations
of cosmological modified gravity. In this paper we study the evolution of
structure in these ``modified-source gravity'' theories. In the linear regime,
density perturbations exhibit scale dependent runaway growth at late times and,
in particular, a mode of a given wavenumber goes nonlinear at a higher redshift
than in the standard ΛCDM model. We discuss the implications of this
behavior and why there are reasons to expect that the growth will be cut off in
the nonlinear regime. Assuming that this holds in a full nonlinear analysis, we
briefly describe how upcoming measurements may probe the differences between
the modified theory and the standard ΛCDM model.Comment: 22 pages, 6 figures, uses iopart styl