27,285 research outputs found

    Nonlinear growth of zonal flows by secondary instability in general magnetic geometry

    Full text link
    We present a theory of the nonlinear growth of zonal flows in magnetized plasma turbulence, by the mechanism of secondary instability. The theory is derived for general magnetic geometry, and is thus applicable to both tokamaks and stellarators. The predicted growth rate is shown to compare favorably with nonlinear gyrokinetic simulations, with the error scaling as expected with the small parameter of the theory.Comment: New J. Phys. 201

    Consistency in NLO analyses of inclusive and semi-inclusive polarized DIS data

    Get PDF
    We perform a detailed study of the consistency between different sets of polarized deep inelastic scattering data and theory, from the standpoint of a next to leading order QCD global analysis, and following the criteria proposed by Collins and Pumplin. In face of recent suggestions that challenge the usual assumption about parent parton spin independence of unpolarized fragmentation functions, we specially focus on polarized semi-inclusive data.Comment: 17 pages, 5 figure

    Constraints on gluon polarization in the nucleon at NLO accuracy

    Get PDF
    We compare constraints on the gluon polarization in the nucleon obtained in next to leading order global QCD fits to polarized deep inelastic scattering data with those coming from observables more directly linked to the gluon polarization, such as the double spin asymmetry measured by Phenix at RHIC, and high-pT hadron production studied by COMPASSComment: 4 pages, 3 figures, 1 tabl

    Understanding nonlinear saturation in zonal-flow-dominated ion temperature gradient turbulence

    Full text link
    We propose a quantitative model of ion temperature gradient driven turbulence in toroidal magnetized plasmas. In this model, the turbulence is regulated by zonal flows, i.e. mode saturation occurs by a zonal-flow-mediated energy cascade ("shearing"), and zonal flow amplitude is controlled by nonlinear decay. Our model is tested in detail against numerical simulations to confirm that both its assumptions and predictions are satisfied. Key results include (1) a sensitivity of the nonlinear zonal flow response to the energy content of the linear instability, (2) a persistence of zonal-flow-regulated saturation at high temperature gradients, (3) a physical explanation of the nonlinear saturation process in terms of secondary and tertiary instabilities, and (4) dependence of heat flux in terms of dimensionless parameters.Comment: Final journal version. Some clarifications and a new Fig.

    Sea quark and gluon polarization in the nucleon at NLO accuracy

    Full text link
    We investigate the sea quark polarization in the nucleon by means of a combined next to leading order analysis to the recently enlarged set of inclusive and semi-inclusive polarized deep inelastic scattering data. Using the Lagrange multiplier method, we asses the uncertainty inherent to the extraction of the different spin dependent parton densities in a QCD global fit, and the impact of the increased set of semi-inclusive data now available. We comment on future prospects at RHIC and JLAB and their potential impact in the future determination of polarized parton densities.Comment: 15 pages, 9 figures, 3 table

    Extraction of polarized parton densities from polarized DIS and SIDIS

    Full text link
    We present results on the quark and gluon polarization in the nucleon obtained in a combined next to leading order analysis to the available inclusive and semi-inclusive polarized deep inelastic scattering data.Comment: Talk given at XIII International Workshop on Deep Inelastic Scattering, April,27 - May,1, 2005, Madison, Wisconsin, USA, 4 pages, 2 figure

    Tidal Torques and the Orientation of Nearby Disk Galaxies

    Full text link
    We use numerical simulations to investigate the orientation of the angular momentum axis of disk galaxies relative to their surrounding large scale structure. We find that this is closely related to the spatial configuration at turnaround of the material destined to form the galaxy, which is often part of a coherent two-dimensional slab criss-crossed by filaments. The rotation axis is found to align very well with the intermediate principal axis of the inertia momentum tensor at this time. This orientation is approximately preserved during the ensuing collapse, so that the rotation axis of the resulting disk ends up lying on the plane traced by the protogalactic material at turnaround. This suggests a tendency for disks to align themselves so that their rotation axis is perpendicular to the minor axis of the structure defined by surrounding matter. One example of this trend is provided by our own Galaxy, where the Galactic plane is almost at right angles with the supergalactic plane (SGP) drawn by nearby galaxies; indeed, the SGP latitude of the North Galactic Pole is just 6 degrees. We have searched for a similar signature in catalogs of nearby disk galaxies, and find a significant excess of edge-on spirals (for which the orientation of the disk rotation axis may be determined unambiguously) highly inclined relative to the SGP. This result supports the view that disk galaxies acquire their angular momentum as a consequence of early tidal torques acting during the expansion phase of the protogalactic material.Comment: 5 pages, 2 figures, accepted for publication in ApJ

    A Faster Implementation of Online Run-Length Burrows-Wheeler Transform

    Full text link
    Run-length encoding Burrows-Wheeler Transformed strings, resulting in Run-Length BWT (RLBWT), is a powerful tool for processing highly repetitive strings. We propose a new algorithm for online RLBWT working in run-compressed space, which runs in O(nlgr)O(n\lg r) time and O(rlgn)O(r\lg n) bits of space, where nn is the length of input string SS received so far and rr is the number of runs in the BWT of the reversed SS. We improve the state-of-the-art algorithm for online RLBWT in terms of empirical construction time. Adopting the dynamic list for maintaining a total order, we can replace rank queries in a dynamic wavelet tree on a run-length compressed string by the direct comparison of labels in a dynamic list. The empirical result for various benchmarks show the efficiency of our algorithm, especially for highly repetitive strings.Comment: In Proc. IWOCA201

    Improved Approximate String Matching and Regular Expression Matching on Ziv-Lempel Compressed Texts

    Full text link
    We study the approximate string matching and regular expression matching problem for the case when the text to be searched is compressed with the Ziv-Lempel adaptive dictionary compression schemes. We present a time-space trade-off that leads to algorithms improving the previously known complexities for both problems. In particular, we significantly improve the space bounds, which in practical applications are likely to be a bottleneck

    Dictionary Matching with One Gap

    Full text link
    The dictionary matching with gaps problem is to preprocess a dictionary DD of dd gapped patterns P1,,PdP_1,\ldots,P_d over alphabet Σ\Sigma, where each gapped pattern PiP_i is a sequence of subpatterns separated by bounded sequences of don't cares. Then, given a query text TT of length nn over alphabet Σ\Sigma, the goal is to output all locations in TT in which a pattern PiDP_i\in D, 1id1\leq i\leq d, ends. There is a renewed current interest in the gapped matching problem stemming from cyber security. In this paper we solve the problem where all patterns in the dictionary have one gap with at least α\alpha and at most β\beta don't cares, where α\alpha and β\beta are given parameters. Specifically, we show that the dictionary matching with a single gap problem can be solved in either O(dlogd+D)O(d\log d + |D|) time and O(dlogεd+D)O(d\log^{\varepsilon} d + |D|) space, and query time O(n(βα)loglogdlog2min{d,logD}+occ)O(n(\beta -\alpha )\log\log d \log ^2 \min \{ d, \log |D| \} + occ), where occocc is the number of patterns found, or preprocessing time and space: O(d2+D)O(d^2 + |D|), and query time O(n(βα)+occ)O(n(\beta -\alpha ) + occ), where occocc is the number of patterns found. As far as we know, this is the best solution for this setting of the problem, where many overlaps may exist in the dictionary.Comment: A preliminary version was published at CPM 201
    corecore