144 research outputs found

    Simple 1-mm receivers with fixed tuned double sideband SIS mixer and wideband InP MMIC amplifier

    Get PDF
    We report on attempts to broaden the IF bandwidth of the BIMA 1mm SIS receivers by cascading fixed tuned double-sideband (DSB) SIS mixers and wideband MMIC IF amplifiers. To obtain the flattest receiver gain across the IF band we tested three schemes for keeping the mixer and amplifier as electrically close as possible. In Receiver I, we connected separate mixer and MMIC modules by a 1" stainless steel SMA elbow. In Receiver II, we integrated mixer and MMIC into a modified BIMA mixer module. In Receiver III, we devised a thermally split block where mixer and MMIC can be maintained at different temperatures in the same module. The best average receiver noise we achieved by combining SIS mixer and MMIC amplifier is 45 -50 K DSB for ν_(LO) = 215 - 240 GHz and below 80 K DSB for ν_(LO) = 205 - 270 GHz. The receiver noise can be made reasonably flat over the CARMA IF band (ν_(IF) = 1 - 5 GHz). Noise temperatures for all three receivers are comparable to or better than those obtained with the BIMA receiver

    A New Monitor and Control Power Supply PCB for Biasing LNAs of Large Radio Telescopes Receivers

    Get PDF
    The biasing of low noise amplifiers (LNA) is of paramount importance for the receivers of large radio telescopes. High stability, optimal trade-off between gain and noise figure, remote control, and mitigation of the radio frequency interferences (RFIs) are all desirable features in the choice of the electronic board devoted to power supply the LNAs. In this paper, we propose the design and characterization of a multilayer printed circuit board (PCB), named GAIA, able to meet all the aforementioned requirements. The GAIA board is a 3-Unit, four-layer, rack-mountable, programmable PCB for the remote biasing of the LNAs, with monitor and control capabilities, specifically designed to operate in the receivers of the 64-m diameter Sardinia Radio Telescope (SRT). We describe the architecture, layout, and measurements of the GAIA board. Our results show that the GAIA power supply provides high stability of the output bias voltages and, in comparison with the old analogic biasing board used so far in the SRT receivers, it shows comparable or better frequency stability, other than a remarkable mitigation of the RFIs

    The effect of oxygen in the photocatalytic oxidation pathways of perfluorooctanoic acid

    Get PDF
    The influence of oxygen in the photocatalytic oxidation of perfluorooctanoic acid (PFOA) promoted by a commercial nano-sized titanium dioxide was studied by testing the reaction in different conditions: static air, oxygen flux, nitrogen flux and pre-saturated nitrogen flux. The reaction was monitored by Total Organic Carbon (TOC) analysis and Ionic Chromatography (IC). Shorter chain perfluorocarboxylic acids (PFCAs; C-n, n = 1-7) intermediate degradation products were quantitatively determined by High-Performance Liquid Chromatography combined with Mass Spectrometry (HPLC-MS) analysis. The presence of shorter chain PFCAs in solution was also monitored by F-19 NMR. The experimental findings are in agreement with two major oxidative pathways: C-n -> Cn-1 photo-redox and beta-scissions routes mediated by COF2 elimination. Depending on the experimental conditions, the mutually operating mechanisms could be unbalanced up to the complete predominance of one pathway over the other. In particular, the existence of the beta-scissions route with COF2 elimination was corroborated by the isolation and characterization of carbonyl difluoride, a predicted fluorinated decomposition by-product

    Simple 1-mm receivers with fixed tuned double sideband SIS mixer and wideband InP MMIC amplifier

    Get PDF
    We report on attempts to broaden the IF bandwidth of the BIMA 1mm SIS receivers by cascading fixed tuned double-sideband (DSB) SIS mixers and wideband MMIC IF amplifiers. To obtain the flattest receiver gain across the IF band we tested three schemes for keeping the mixer and amplifier as electrically close as possible. In Receiver I, we connected separate mixer and MMIC modules by a 1" stainless steel SMA elbow. In Receiver II, we integrated mixer and MMIC into a modified BIMA mixer module. In Receiver III, we devised a thermally split block where mixer and MMIC can be maintained at different temperatures in the same module. The best average receiver noise we achieved by combining SIS mixer and MMIC amplifier is 45 -50 K DSB for ν_(LO) = 215 - 240 GHz and below 80 K DSB for ν_(LO) = 205 - 270 GHz. The receiver noise can be made reasonably flat over the CARMA IF band (ν_(IF) = 1 - 5 GHz). Noise temperatures for all three receivers are comparable to or better than those obtained with the BIMA receiver

    The Coaxial L-P Cryogenic Receiver of the Sardinia Radio Telescope

    Get PDF
    The design and characterization of the coaxial dual-band L-P radio astronomical receiver for the prime focus of the Sardinia radio telescope are presented. The main feature of this receiver is to allow simultaneous radio astronomical observations in the P (305-410 MHz) and L (1.3-1.8 GHz) frequency bands. This functionality, which has been requested by the Pulsar research group at the National Institute for Astrophysics to estimate, among the others, the ionospheric dispersion in Pulsar observation, is currently missing in any other radio astronomical facility throughout the world. Also, single band operation is ensured by the proposed design both in linear and circular polarization, making this L-P receiver an ideal instrument for a wide range of radio astronomical and space applications. Some components of the receiver chain have been housed inside a cryostat and refrigerated at 20 K to reduce the noise temperature, resulting in a good performance compared to the receivers of other large radio telescopes. Several challenging issues have been faced in the design, mainly due to the large dimension and weight of the overall structure to be mounted in the prime focus position. Moreover, the design of the cryostat was constrained by the limited space available in the direction of the optical axis inside the focal cabin of the radio telescope, requiring a compact and light realization of the components of the receiver chain. This called for a home-made design of several devices, requiring a strong collaborative effort by researchers, engineers, and astronomers

    Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 GHz and 7 GHz

    Get PDF
    Observations of supernova remnants (SNRs) are a powerful tool for investigating the later stages of stellar evolution, the properties of the ambient interstellar medium, and the physics of particle acceleration and shocks. For a fraction of SNRs, multi-wavelength coverage from radio to ultra high-energies has been provided, constraining their contributions to the production of Galactic cosmic rays. Although radio emission is the most common identifier of SNRs and a prime probe for refining models, high-resolution images at frequencies above 5 GHz are surprisingly lacking, even for bright and well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical Validation and Early Science Program with the 64-m single-dish Sardinia Radio Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz of the IC443 and W44 complexes coupled with spatially-resolved spectra in the 1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping techniques, providing antenna beam oversampling and resulting in accurate continuum flux density measurements. The integrated flux densities associated with IC443 are S_1.5GHz = 134 +/- 4 Jy and S_7GHz = 67 +/- 3 Jy. For W44, we measured total flux densities of S_1.5GHz = 214 +/- 6 Jy and S_7GHz = 94 +/- 4 Jy. Spectral index maps provide evidence of a wide physical parameter scatter among different SNR regions: a flat spectrum is observed from the brightest SNR regions at the shock, while steeper spectral indices (up to 0.7) are observed in fainter cooling regions, disentangling in this way different populations and spectra of radio/gamma-ray-emitting electrons in these SNRs.Comment: 13 pages, 9 figures, accepted for publication to MNRAS on 18 May 201

    New light on the S235A-B star forming region

    Full text link
    The S235A-B star forming region has been extensively observed in the past from the radio to the near-IR, but what was happening in the immediate surroundings of the water maser, placed in between the two nebulosities, was still unclear because of insufficient resolution especially in the spectral range from the Far-IR to the mm, even though there were sound indications that new young stellar objects (YSOs) are being formed there. We present here new high resolution maps at mm wavelengths in different molecules (HCO+, C34S, H2CS, SO2 and CH3CN), as well as in the 1.2 and 3.3 mm continuum obtained with the Plateau de Bure interferometer, and JCMT observations at 450 micron and 850 micron that unambiguously reveal the presence of new YSOs placed in between the two HII regions S235A and S235B and associated with the water maser. A molecular core and an unresolved source in the mm and in the sub-mm are centred on the maser, with indication of mass infall onto the core. Two molecular bipolar outflows and a jet originate from the same position. Weak evidence is found for a molecular rotating disk perpendicular to the direction of the main bipolar outflow. The derived parameters indicate that one of the YSOs is an intermediate luminosity object (L~1000 Lsun) in a very early evolutionary phase, embedded in a molecular core of ~100 Msun, with a temperature of 30 K. The main source of energy for the YSO could come from gravitational infall, thus making of this YSO a rare example of intermediate luminosity protostar representing a link between the earliest evolutionary phases of massive stars and low mass protostars of class 0-I.Comment: 19 pages, 22 figures, to be published in Astronomy & Astrophysic

    Sviluppi di Ricevitori e di Componentistica per Banda 3 mm ad INAF-OA Cagliari

    Get PDF
    L'INAF-OA Cagliari (OACa) sta sviluppando un ricevitore criogenico a basso rumore basato su un mixer SSB (Single Side Band) a superconduttore SIS (Superconductor-Insulator-Superconductor) per la banda 3 mm. Il ricevitore, acquistato da IRAM, è stato fortemente modificato per essere adattato al fuoco Gregoriano di SRT (Sardinia Radio Telescope). Lo strumento è caratterizzato da una nuova criogenia a ciclo chiuso 4 K (per evitare l'uso di elio liquido in antenna), da un nuovo oscillatore locale (di tipo ALMA Banda 3) e da un nuovo sistema di controllo e di monitoraggio basato su schede Raspberry ed Arduino sviluppato ad OACa. Verranno presentati i recenti sviluppi sul ricevitore, inclusi i risultati preliminari della misura della temperatura di rumore, che raggiunge un valore pari a Trec=66 K alla frequenza di 86 GHz, nonostante la criogenia non sia ancora ottimizzata. L'INAF-OACa è coinvolto nel progetto AETHRA (Advanced European Technologies for Heterodyne Receivers for Astronomy) nel quadro del programma Radionet/Horizon2020 per il quale sta contribuendo al WP1 (Work Package 1). Lo scopo del WP1 è di sviluppare e costruire un dimostratore di un array di ricevitori a doppia polarizzazione per la banda 3 mm basato su amplificatori criogenici a basso rumore (LNA) in tecnologia a semiconduttore MMIC. Nell'ambito del WP1 l'OACa ha in carico il progetto di un OrthomodeTransducer (OMT) in guida d'onda o in tecnologia planare per la banda 72-116 GHz che sia integrabile con amplificatori MMICs ed adatto all'integrazione in un array da installare nel piano focale di un radiotelescopio. Verranno presentati i design preliminari degli OMT per AETHRA, che sono basati su prototipi sviluppati in passato da OACa
    • …
    corecore