1,668 research outputs found

    The Applegate mechanism in Post-Common-Envelope Binaries: Investigating the role of rotation

    Full text link
    Eclipsing time variations (ETVs) are observed in many close binary systems. In particular, for several post-common-envelope binaries (PCEBs) that consist of a white dwarf and a main sequence star, the O-C diagram suggests that real or apparent orbital period variations are driven by Jupiter-mass planets or as a result of magnetic activity, the so-called Applegate mechanism. The latter explains orbital period variations as a result of changes in the stellar quadrupole moment due to magnetic activity. We explore the feasibility of driving ETVs via the Applegate mechanism for a sample of PCEB systems, including a range of different rotations. Using the MESA code we evolve 12 stars with different masses and rotation rates. We apply a simple dynamo model to their radial profiles to investigate on which scale the predicted activity cycle matches the observed modulation period, and quantify the uncertainty, and further calculate the required energies to drive que Applegate mechanism. We show that the Applegate mechanism is energetically feasible in 5 PCEB systems, and note that these are the systems with the highest rotation rate compared to the critical rotation rate of the main-sequence star. The results suggest that the ratio of physical to critical rotation in the main sequence star is an important indicator for the feasibility of Applegate's mechanism, but exploring larger samples will be necessary to probe this hypothesis.Comment: 9 pages, 5 figures. Accepted for publication in A&

    Inducing nonclassical lasing via periodic drivings in circuit quantum electrodynamics

    Get PDF
    We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize the system both by mean-field theory and exact calculations. Our work may find applications in the generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative few- and many-body phase transitions

    Simulating quantum-optical phenomena with cold atoms in optical lattices

    Get PDF
    We propose a scheme involving cold atoms trapped in optical lattices to observe different phenomena traditionally linked to quantum-optical systems. The basic idea consists of connecting the trapped atomic state to a non-trapped state through a Raman scheme. The coupling between these two types of atoms (trapped and free) turns out to be similar to that describing light-matter interaction within the rotating-wave approximation, the role of matter and photons being played by the trapped and free atoms, respectively. We explain in particular how to observe phenomena arising from the collective spontaneous emission of atomic and harmonic oscillator samples such as superradiance and directional emission. We also show how the same setup can simulate Bose-Hubbard Hamiltonians with extended hopping as well as Ising models with long-range interactions. We believe that this system can be realized with state of the art technology

    Symbiotic Stars in OGLE Data I. Large Magellanic Cloud Systems

    Get PDF
    Symbiotic stars are long-orbital-period interacting-binaries characterized by extended emission over the whole electromagnetic range and by complex photometric and spectroscopic variability. In this paper, the first of a series, we present OGLE light curves of all the confirmed symbiotic stars in the Large Magellanic Cloud, with one exception. By careful visual inspection and combined time-series analysis techniques, we investigate for the first time in a systematic way the photometric properties of these astrophysical objects, trying in particular to distinguish the nature of the cool component (e.g., Semi-Regular Variable vs. OGLE Small-Amplitude Red Giant), to provide its first-order pulsational ephemerides, and to link all this information with the physical parameters of the binary system as a whole. Among the most interesting results, there is the discovery of a 20-year-long steady fading of Sanduleak's star, a peculiar symbiotic star known to produce the largest stellar jet ever discovered. We discuss by means of direct examples the crucial need for long-term multi-band observations to get a real understanding of symbiotic and other interacting binary stars. We eventually introduce BOMBOLO, a multi-band simultaneous imager for the SOAR 4m Telescope, whose design and construction we are currently leading.Comment: 16 pages, 4 Tables, 12 Figures. Accepted for publication in MNRA

    Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions

    Full text link
    The generation of continuous-variable multipartite entangled states is important for several protocols of quantum information processing and communication, such as one-way quantum computation or controlled dense coding. In this article we theoretically show that multimode optical parametric oscillators can produce a great variety of such states by an appropriate control of the parametric interaction, what we accomplish by tailoring either the spatio-temporal shape of the pump, or the geometry of the nonlinear medium. Specific examples involving currently available optical parametric oscillators are given, hence showing that our ideas are within reach of present technology.Comment: 14 pages, 5 figure

    Long-term variations in the X-ray activity of HR 1099

    Full text link
    Although timing variations in close binary systems have been studied for a long time, their underlying causes are still unclear. A possible explanation is the so-called Applegate mechanism, where a strong, variable magnetic field can periodically change the gravitational quadrupole moment of a stellar component, thus causing observable period changes. One of the systems exhibiting such strong orbital variations is the RS CVn binary HR 1099, whose activity cycle has been studied by various authors via photospheric and chromospheric activity indicators, resulting in contradicting periods. We aim at independently determining the magnetic activity cycle of HR 1099 using archival X-ray data to allow for a comparison to orbital period variations. Archival X-ray data from 80 different observations of HR 1099 acquired with 12 different X-ray facilities and covering almost four decades were used to determine X-ray fluxes in the energy range of 2-10 keV via spectral fitting and flux conversion. Via the Lomb-Scargle periodogram we analyze the resulting long-term X-ray light curve to search for periodicities. We do not detect any statistically significant periodicities within the X-ray data. An analysis of optical data of HR 1099 shows that the derivation of such periods is strongly dependent on the time coverage of available data, since the observed optical variations strongly deviate from a pure sine wave. We argue that this offers an explanation as to why other authors derive such a wide range of activity cycle periods based on optical data. We conclude that our analysis constitutes the longest stellar X-ray activity light curve acquired to date, yet the still rather sparse sampling of the X-ray data, along with stochastic flaring activity, does not allow for the independent determination of an X-ray activity cycle.Comment: 8 pages, 6 figures, 2 tables accepted for publication in A&

    Generating highly squeezed Hybrid Laguerre-Gauss modes in large-Fresnel-number Degenerate Optical Parametric Oscillators

    Full text link
    We theoretically describe the quantum properties of a large Fresnel number degenerate optical parametric oscillator with spherical mirrors that is pumped by a Gaussian beam. The resonator is tuned so that the resonance frequency of a given transverse mode family coincides with the down-converted frequency. After demonstrating that only the lower orbital angular momentum (OAM) Laguerre-Gauss modes are amplified above threshold, we focus on the quantum properties of the rest of (classically empty) modes. We find that combinations of opposite OAM (Hybrid Laguerre-Gauss modes) can exhibit arbitrary large quadrature squeezing for the lower OAM non amplified modes.Comment: 10 pages, 3 figures and 2 table

    An efficient semiparametric maxima estimator of the extremal index

    Get PDF
    The extremal index θ\theta, a measure of the degree of local dependence in the extremes of a stationary process, plays an important role in extreme value analyses. We estimate θ\theta semiparametrically, using the relationship between the distribution of block maxima and the marginal distribution of a process to define a semiparametric model. We show that these semiparametric estimators are simpler and substantially more efficient than their parametric counterparts. We seek to improve efficiency further using maxima over sliding blocks. A simulation study shows that the semiparametric estimators are competitive with the leading estimators. An application to sea-surge heights combines inferences about θ\theta with a standard extreme value analysis of block maxima to estimate marginal quantiles.Comment: 17 pages, 7 figures. Minor edits made to version 1 prior to journal publication. The final publication is available at Springer via http://dx.doi.org/10.1007/s10687-015-0221-
    • …
    corecore