103 research outputs found

    Carbon Dioxide Utilisation -The Formate Route

    Get PDF
    UIDB/50006/2020 CEEC-Individual 2017 Program Contract.The relentless rise of atmospheric CO2 is causing large and unpredictable impacts on the Earth climate, due to the CO2 significant greenhouse effect, besides being responsible for the ocean acidification, with consequent huge impacts in our daily lives and in all forms of life. To stop spiral of destruction, we must actively reduce the CO2 emissions and develop new and more efficient “CO2 sinks”. We should be focused on the opportunities provided by exploiting this novel and huge carbon feedstock to produce de novo fuels and added-value compounds. The conversion of CO2 into formate offers key advantages for carbon recycling, and formate dehydrogenase (FDH) enzymes are at the centre of intense research, due to the “green” advantages the bioconversion can offer, namely substrate and product selectivity and specificity, in reactions run at ambient temperature and pressure and neutral pH. In this chapter, we describe the remarkable recent progress towards efficient and selective FDH-catalysed CO2 reduction to formate. We focus on the enzymes, discussing their structure and mechanism of action. Selected promising studies and successful proof of concepts of FDH-dependent CO2 reduction to formate and beyond are discussed, to highlight the power of FDHs and the challenges this CO2 bioconversion still faces.publishersversionpublishe

    111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting

    Full text link
    [EN] Development of renewable fuels from solar light appears as one of the main current challenges in energy science. A plethora of photocatalysts have been investigated to obtain hydrogen and oxygen from water and solar light in the last decades. However, the photon-to-hydrogen molecule conversion is still far from allowing real implementation of solar fuels. Here we show that 111 facet-oriented gold nanoplatelets on multilayer graphene films deposited on quartz is a highly active photocatalyst for simulated sunlight overall water splitting into hydrogen and oxygen in the absence of sacrificial electron donors, achieving hydrogen production rate of 1.2 molH2 per gcomposite per h. This photocatalytic activity arises from the gold preferential orientation and the strong gold–graphene interaction occurring in the composite system.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315) and Generalitat Valenciana (Prometeo 2013-019) is gratefully acknowledged. D.M. and I.E.-A. thank to Spanish Ministry of Science for PhD scholarships.Mateo Mateo, D.; Esteve Adell, I.; Albero Sancho, J.; Sánchez Royo, JF.; Primo Arnau, AM.; García Gómez, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications. 2016(7):1-8. https://doi.org/10.1038/ncomms11819S1820167Lv, X. J., Zhou, S., Huang, X., Wang, C. & Fu, W. F. Photocatalytic overall water splitting promoted by SnOx-NiGa2O4 photocatalysts. Appl. Cat. B: Environ. 182, 220–228 (2016).Xu, J., Wang, L. & Cao, X. Polymer supported graphene-CdS composite catalyst with enhanced photocatalytic hydrogen production from water splitting under visible light. Chem. Eng. J. 283, 816–825 (2016).Tanigawa, S. & Irie, H. Visible-light-sensitive two-step overall water-splitting based on band structure control of titanium dioxide. Appl. Cat. B: Environ. 180, 1–5 (2016).Maeda, K. et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127, 8286–8287 (2005).Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006).Kato, H. & Kudo, A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J. Phys. Chem. B 106, 5029–5034 (2002).Xiang, Q., Cheng, B. & Yu, J. Graphene-based photocatalysts for solar-fuel generation. Angew. Chem. Int. Ed. 54, 11350–11366 (2015).Navalon, S., Dhakshinamoorthy, A., Alvaro, M. & Garcia, H. Carbocatalysis by graphene-based materials. Chem. Rev. 114, 6179–6212 (2014).Yu, J., Jin, J., Cheng, B. & Jaroniec, M. A noble metal-free reduced graphene oxide-cds nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mat. Chem. A 2, 3407–3416 (2014).Meng, F., Cushing, S. K., Li, J., Hao, S. & Wu, N. Enhancement of solar hydrogen generation by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles and reduced graphene oxide nanosheets. ACS Catal. 5, 1949–1955 (2015).Shown, I. et al. Highly efficient visible light photocatalytic reduction of co2 to hydrocarbon fuels by cu-nanoparticle decorated graphene oxide. Nano Lett. 14, 6097–6103 (2014).Shang, L. et al. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew. Chem. Int. Ed. 53, 250–254 (2014).Latorre-Sánchez, M., Primo, A. & García, H. P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures. Angew. Chem. Int. Ed. 52, 11813–11816 (2013).Lavorato, C., Primo, A., Molinari, R. & Garcia, H. N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures. Chem. - A Eur. J. 20, 187–194 (2014).Shams, S. S., Zhang, L. S., Hu, R., Zhang, R. & Zhu, J. Synthesis of graphene from biomass: a green chemistry approach. Mater. Lett. 161, 476–479 (2015).Meng, F. et al. Biomass-derived high-performance tungsten-based electrocatalysts on graphene for hydrogen evolution. J. Mater. Chem. A 3, 18572–18577 (2015).Vilatela, J. J. & Eder, D. Nanocarbon composites and hybrids in sustainability: a review. ChemSusChem 5, 456–478 (2012).Rani, P. & Jindal, V. K. Designing band gap of graphene by B and N dopant atoms. RSC Adv. 3, 802–812 (2013).Zheng, Y. et al. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014).Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).Huang, H., Yang, S., Vajtai, R., Wang, X. & Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 26, 5160–5165 (2014).Shiraishi, Y. et al. Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light. Chem. Commun. 50, 15255–15258 (2014).G. Baldoví, H. et al. Visible-light photoresponse of gold nanoparticles supported on TiO2: A combined photocatalytic, photoelectrochemical, and transient spectroscopy study. ChemPhysChem 16, 335–341 (2015).Serra, M., Albero, J. & Garcia, H. Photocatalytic Activity of Au/TiO2 photocatalysts for H-2 evolution: role of the Au nanoparticles as a function of the irradiation wavelength. ChemPhysChem 16, 1842–1845 (2015).Gomes Silva, C., Juárez, R., Marino, T., Molinari, R. & García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2011).El Kadib, A. Chitosan as a sustainable organocatalyst: a concise overview. ChemSusChem 8, 217–244 (2015).Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M. & García, H. From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem. Commun. 48, 9254–9256 (2012).Primo, A. & Quignard, F. Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon-carbon bond formation. Chem. Commun. 46, 5593–5595 (2010).Primo, A. et al. One-step pyrolysis preparation of 1.1.1 oriented gold nanoplatelets supported on graphene and six orders of magnitude enhancement of the resulting catalytic activity. Angew. Chem. Int. Ed. 54, 1–7 (2015).Lalov, I. G., Guerginov, I. I., Krysteva, M. A. & Fartsov, K. Treatment of waste water from distilleries with chitosan. Water Res. 34, 1503–1506 (2000).No, H. K. & Meyers, S. P. Application of Chitosan for Treatment of Wastewaters in Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews eds George W. W. 1–27Springer (2000).Liu, C. et al. Hydrothermal synthesis of N-doped TiO2 nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties. J. Alloys Compd. 656, 24–32 (2016).Radnik, J., Mohr, C. & Claus, P. On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and materials synthesis. Phys. Chem. Chem. Phys. 5, 172–177 (2003).Primo, A. et al. High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nat. Commun. 6, 8561 (2015).Abbasi, M. et al. Application of transmitted Kikuchi diffraction in studying nano-oxide and ultrafine metallic grains. ACS Nano 9, 10991–11002 (2015).Trimby, P. T. Orientation mapping of nanostructured materials using transmission kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 16–24 (2012).Johnson, C. J., Dujardin, E., Davis, S. A., Murphy, C. J. & Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 12, 1765–1770 (2002).Ikeda, S. et al. Mechano-catalysis—a novel method for overall water splitting. Phys. Chem. Chem. Phys. 1, 4485–4491 (1999).Khalid, N. R., Ahmed, E., Hong, Z., Sana, L. & Ahmed, M. Enhanced photocatalytic activity of graphene-TiO2 composite under visible light irradiation. Curr. Appl. Phys. 13, 659–663 (2013).Singh, G. P., Shrestha, K. M., Nepal, A., Klabunde, K. J. & Sorensen, C. M. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting. Nanotechnology 25, 265701 (2014).Wang, M., Han, J., Xiong, H. & Guo, R. Yolk@shell nanoarchitecture of Au@r-GO/TiO2 hybrids as powerful visible light photocatalysts. Langmuir 31, 6220–6228 (2015).Luo, Z. et al. Modulating the electronic structures of graphene by controllable hydrogenation. Appl. Phys. Lett. 97, 233111 (2010).Sridhara Rao, D. V., Muraleedharan, K. & Humphreys, C. J. in Microscope Science, Technology, Applications and Education 3, 1232–1244Formatec (2010)

    Environmental signal in the evolutionary diversification of bird skeletons

    No full text
    Characterizing how variation in the tempo and mode of evolution has structured the phenotypic diversity of extant species is a central goal of macroevolution1,2,3. However, studies are typically limited to a handful of traits4,5,6, providing incomplete information. We analyse morphological diversification in living birds, an ecologically diverse group7, documenting structural scales from ‘pan-skeletal’ proportions down to the localized three-dimensional shape changes of individual bones. We find substantial variation in evolutionary modes among avian subgroups and among skeletal parts, indicating widespread mosaicism and possible differences in the structure of the macroevolutionary landscape across Earth’s main environments. Water-linked groups, especially Aequorlitornithes (waterbirds), have repeatedly explored a large portion of their total morphospace, emphasizing variation in body proportions and in the shape of bones close to the body core, which are functionally related to the mechanics of locomotion8. By contrast, landbirds (Inopinaves) evolved distinct, group-specific body forms early in the aftermath of the K-Pg and subsequently emphasized local shape variation, especially in the head and distal limb bones, which interact more directly with the environment. Passerines, which comprise more than half of all bird species, show a conservative evolutionary dynamic that resulted in low disparity across all skeletal parts. Evidence for early establishment of the morphospace of living birds is clear for some skeletal parts, including beaks and the combined skeletal morphology. However, we find little evidence for early partitioning of that morphospace, contrary to more specific predictions of ‘niche-filling’ models1,9. Nevertheless, early divergence among broad environmental types may have caused an early divergence of evolutionary modes, suggesting an important role for environmental divergence in structuring the radiation of crown-group birds

    Environmental signal in the evolutionary diversification of bird skeletons

    No full text
    Characterizing how variation in the tempo and mode of evolution has structured the phenotypic diversity of extant species is a central goal of macroevolution1,2,3. However, studies are typically limited to a handful of traits4,5,6, providing incomplete information. We analyse morphological diversification in living birds, an ecologically diverse group7, documenting structural scales from ‘pan-skeletal’ proportions down to the localized three-dimensional shape changes of individual bones. We find substantial variation in evolutionary modes among avian subgroups and among skeletal parts, indicating widespread mosaicism and possible differences in the structure of the macroevolutionary landscape across Earth’s main environments. Water-linked groups, especially Aequorlitornithes (waterbirds), have repeatedly explored a large portion of their total morphospace, emphasizing variation in body proportions and in the shape of bones close to the body core, which are functionally related to the mechanics of locomotion8. By contrast, landbirds (Inopinaves) evolved distinct, group-specific body forms early in the aftermath of the K-Pg and subsequently emphasized local shape variation, especially in the head and distal limb bones, which interact more directly with the environment. Passerines, which comprise more than half of all bird species, show a conservative evolutionary dynamic that resulted in low disparity across all skeletal parts. Evidence for early establishment of the morphospace of living birds is clear for some skeletal parts, including beaks and the combined skeletal morphology. However, we find little evidence for early partitioning of that morphospace, contrary to more specific predictions of ‘niche-filling’ models1,9. Nevertheless, early divergence among broad environmental types may have caused an early divergence of evolutionary modes, suggesting an important role for environmental divergence in structuring the radiation of crown-group birds

    Craniofacial development illuminates the evolution of nightbirds (Strisores)

    No full text
    Evolutionary variation in ontogeny played a central role in the origin of the avian skull. However, its influence in subsequent bird evolution is largely unexplored. We assess the links between ontogenetic and evolutionary variation of skull morphology in Strisores (nightbirds). Nightbirds span an exceptional range of ecologies, sizes, life-history traits and craniofacial morphologies constituting an ideal test for evo-devo hypotheses of avian craniofacial evolution. These morphologies include superficially ‘juvenile-like’ broad, flat skulls with short rostra and large orbits in swifts, nightjars and allied lineages, and the elongate, narrow rostra and globular skulls of hummingbirds. Here, we show that nightbird skulls undergo large ontogenetic shape changes that differ strongly from widespread avian patterns. While the superficially juvenile-like skull morphology of many adult nightbirds results from convergent evolution, rather than paedomorphosis, the divergent cranial morphology of hummingbirds originates from an evolutionary reversal to a more typical avian ontogenetic trajectory combined with accelerated ontogenetic shape change. Our findings underscore the evolutionary lability of cranial growth and development in birds, and the underappreciated role of this aspect of phenotypic variability in the macroevolutionary diversification of the amniote skull

    Progression of posturographic findings after acquired brain injury

    Full text link
    Objective: To study the characteristics of balance performance in a sample of patients with increasing postural instability after acquired brain injury (ABI) and to establish the clinical utility of a new computerized posturographic system (NedSVE/IBV). Methods: This study included 108 patients with ABI divided into five groups from minimal to severe postural impairment. All patients were assessed with the NedSVE/IBV system and with traditional balance measures. Posturographic analyses included the modified clinical test of sensory interaction on balance, the limits of stability and the weight-shifting test. Sensitivity to detect changes and reproducibility were evaluated in 63 patients who were followed-up for 6 months and in 20 patients who were evaluated on two separate occasions during the same week, respectively. Results: The patients showed reduced stability limits, abnormal postural responses and an increased reliance on visual input with differences in intensity directly related to their degree of balance impairment. Posturographic study showed excellent convergent validity, reproducibility and sensitivity to detect changes. Conclusion: The data suggests that, regardless of the intensity of postural instability, there is a common mechanism of sensory processing to maintain balance after ABI. The NedSVE-IBV system is a valid tool to quantify balance after ABI.Navalon, N.; Verdecho, I.; Llorens RodrĂ­guez, R.; Colomer, C.; Sanchez-Leiva, C.; Martinez-Crespo, G.; Moliner, B.... (2014). Progression of posturographic findings after acquired brain injury. Brain Injury. 28(11):1417-1424. doi:10.3109/02699052.2014.917200S14171424281

    Subaqueous foraging among carnivorous dinosaurs

    No full text
    Secondary aquatic adaptations evolved independently more than 30 times from terrestrial vertebrate ancestors1,2. For decades, non-avian dinosaurs were believed to be an exception to this pattern. Only a few species have been hypothesized to be partly or predominantly aquatic3,4,5,6,7,8,9,10,11. However, these hypotheses remain controversial12,13, largely owing to the difficulty of identifying unambiguous anatomical adaptations for aquatic habits in extinct animals. Here we demonstrate that the relationship between bone density and aquatic ecologies across extant amniotes provides a reliable inference of aquatic habits in extinct species. We use this approach to evaluate the distribution of aquatic adaptations among non-avian dinosaurs. We find strong support for aquatic habits in spinosaurids, associated with a marked increase in bone density, which precedes the evolution of more conspicuous anatomical modifications, a pattern also observed in other aquatic reptiles and mammals14,15,16. Spinosaurids are revealed to be aquatic specialists with surprising ecological disparity, including subaqueous foraging behaviour in Spinosaurus and Baryonyx, and non-diving habits in Suchomimus. Adaptation to aquatic environments appeared in spinosaurids during the Early Cretaceous, following their divergence from other tetanuran theropods during the Early Jurassic17
    • 

    corecore