5 research outputs found

    ABCG5 gene responses to treadmill running with or without administration of Pistachio atlantica in female rats

    No full text
      Objective(s): ABC transporters comprise a large family of transmembrane proteins that use the energy provided by ATP hydrolysis to translocate a variety of substrates across biological membranes. All members of the human ABCG subfamily, except for ABCG2, are cholesterol-transporter. The aim of this study was to determine the liver, the small intestine and kidney ABCG5 relative gene expression in response to treadmill-running training in female rats. Materials and Methods: Twenty Wistar rats (6-8 weeks old and 125-135 g weight) were used. Animals were randomly assigned to saline-control (SC), saline-training (ST), and Baneh-control (BC), and Baneh-training (BT) groups. Training groups did the exercise on a motor-driven treadmill at 25 m/min (0% grade) for 60 min/day for eight weeks (5 days/week). Rats were fed orally, with Baneh extraction and saline for six weeks. The two-way ANOVA was employed for statistical analysis.  ABCG5 relative gene expression was detected by Real-time PCR method. Results:The current findings indicate that the Baneh-treated tissues had significantly lower levels of ABCG5 gene expression in the liver, small intestine, and kidneys (P< 0.001, P< 0.003, P< 0.001, respectively), when compared with saline-treated tissues. However, a higher level of gene expression was observed in exercise groups. A lower level of HDL-c but not triglyceride (TG) and total cholesterol (TC) levels were found in Baneh-treated animals at rest. Conclusion: Exercise training increases ABCG5 relative gene expression in the liver, small intestine and kidney tissues; therefore exercise training may adjust the reduction of ABCG5 relative gene expression in Baneh-training group

    Maximal Lipid Oxidation (Fatmax) in Physical Exercise and Training: A review and Update

    No full text
    The exercise intensity, at which the maximal fat oxidation (MFO) rate occurs, has been defined as Fatmax. It has been suggested that the fat oxidation rate during the Fatmax intensity is approximately 2-fold greater than at any other intensity although modifiable by several physiological conditions (training, previous exercise or meal). There are a few standardized protocols for estimating of Fatmax. The most common tests include: Cycle Ergometer (CE) and Treadmill (TM). Reviewing of tables of the study appoint that the extent of weight or fat loss in response to exercise training varies among individuals

    Heart ABCA1 and ppar- α genes expression responses in male rats: Effects of high intensity treadmill running training and aqueous extraction of black crataegus-pentaegyna

    No full text
    Introduction: Heart as a high metabolic and aerobic tissue is consuming lipid as a fuel for its energy provision at rest during light and moderate exercise, except when lactate level is higher in blood circulation. It has been shown that any type of regular exercise and crataegus species would improve cardiovascular function and minimizes several risk factors via stimulating lipid metabolism by acting on enzymes and genes expression such as ABCA1 and PPAR α which are involving in this process. Materials and Methods: Twenty Wistar male rats (4-6 weeks old, 140-173 g weight) were used. Animals were randomly classified into training (n = 10) and control (n = 10) groups and then divided into saline-control (SC), saline-training (ST), Crataegus-Pentaegyna -control (CPC), and Crataegus-Pentaegyna -training (CPT) groups. Training groups have performed a high-intensity running program (at 34 m/min (0% grade), 60 min/day, 5 days/week) on a motor-driven treadmill for eight weeks. Animals were orally fed with Crataegus-Pentaegyna extraction (500mg/kg) and saline solution for six weeks. Seventy- two hours after the last training session, rats were sacrificed, hearts were excised, cleaned and immediately frozen in liquid nitrogen and stored at -80 °C until RNA extraction. Plasma also was collected for plasma variable measurements. Statistical analysis was performed using a two way analysis of variance, and significance was accepted at P < 0.05. Results: A non-significant (P < 0.4, P < 0.79, respectively) increase in ABCA1 and PPAR α genes expression was accompanied by a significant (P < 0.01, P < 0.04, P < 0.04, respectively) reduction in TC, TG, and VLDL-C levels in Crataegus-Pentaegyna groups. Conclusions: Our findings show that a high intensity treadmill running was able to express ABCA1 and PPAR α in rat heart. Data also possibly indicate that the Crataeguse-Pentaegyna supplementation solely could mimic training effect on the mentioned genes and lipid profiles via different mechanism(s)

    Visfatin Gene Responses to 8 Weeks of Treadmill Running with or without &lt;i&gt;Pistachio atlantica&lt;/i&gt; Liquid Extraction in Female Rat Tissues

    Full text link
    This find is registered at Portable Antiquities of the Netherlands with number PAN-0003240

    Physical activity and adipokine levels in individuals with type 2 diabetes: A literature review and practical applications

    No full text
    International audienceWe review the effects of acute and long-term physical activity on adipokine levels in individuals with type 2 diabetes (T2D). Three electronic databases were searched. Studies made in animal models were excluded, while studies based on participants with and without T2D, and also studies with type 1 diabetes were included. Of the 2,450 citations, 63 trials, including randomised control trials, cross-sectional and longitudinal studies, met our inclusion criteria. Seventy and five percent of studies reported the effects of physical activity on tumor necrosis factor-alpha (TNFα), interleukin 6 (IL-6), adiponectin, visfatin, omentin-1, and leptin levels. There are no robust results due to variations in exercise modality, intensity, duration, and also differences in cohort characteristics in the literature. Only four studies described the effects of an acute session of physical activity on adipokine levels. Overall, physical activity improves diabetes status by regulating adipokine levels. However, long-term aerobic + resistance training combined with dietary modifications is likely to be a more effective strategy for improving adipokines profiles in patients with type 2 diabetes
    corecore