1,861 research outputs found

    The reaction NH2 + PH3 yields NH3 + PH2: Absolute rate constant measurement and implication for NH3 and PH3 photochemistry in the atmosphere of Jupiter

    Get PDF
    The rate constant is measured over the temperature interval 218-456 K using the technique of flash photolysis-laser-induced fluorescence. NH2 radicals are produced by the flash photolysis of ammonia highly diluted in argon, and the decay of fluorescent NH2 photons is measured by multiscaling techniques. For each of the five temperatures employed in the study, the results are shown to be independent of variations in PH3 concentration, total pressure (argon), and flash intensity. It is found that the rate constant results are best represented for T between 218 and 456 K by the expression k = (1.52 + or - 0.16) x 10 to the -12th exp(-928 + or - 56/T) cu cm per molecule per sec; the error quoted is 1 standard deviation. This is the first determination of the rate constant for the reaction NH2 + PH3. The data are compared with an estimate made in order to explain results of the radiolysis of NH3-PH3 mixtures. The Arrhenius parameters determined here for NH2 + PH3 are then constrasted with those for the corresponding reactions of H and OH with PH3

    T-violation in Kμ3K_{\mu3} decay in a general two-Higgs doublet model

    Get PDF
    We calculate the transverse muon polarization in the Kμ3+K^+_{\mu3} process arising from the Yukawa couplings of charged Higgs boson in a general two-Higgs doublet model where spontaneous violation of CP is presentComment: 6 pages, latex, accepted for publication in Phys. Rev.

    Rate constant for the reaction NH2 + NO from 216 to 480 K

    Get PDF
    The absolute rate constant was measured by the technique of flash photolysis-laser induced fluorescence (FP-LIF). NH2 radicals were produced by the flash photolysis of ammonia and the fluorescent NH2 photons were measured by multiscaling techniques. At each temperature, the results were independent of variations in total pressure, and flash intensity. The results are compared with previous determinations using the techniques of mass spectrometry, absorption spectroscopy, laser absorption spectroscopy, and laser induced fluorescence. The implications of the results are discussed with regard to combustion, post combustion, and atmospheric chemistry. The results are also discussed theoretically

    The reaction Cl + H2CO yields HCl + HCO: Decreased sensitivity of stratospheric ozone to chlorine perturbations

    Get PDF
    The absolute rate constant for the reaction Cl + H2CO yields HCl + HCO was determined by the flash-photolysis resonance fluorescence method to be 7.5 plus or minus 0.9 (2 sigma) times 10 to the minus 11th power cu cm/molecule sec at 298 K and to have a negligible temperature dependence. This rate which is more than 2000 times faster than the rate of Cl + CH4 indicates that formaldehyde (H2CO) will compete significantly with methane (CH4) for the conversion of active chlorine in the stratosphere to the inactive reservoir HCl. Chlorine will thus be a less efficient destroyer of stratosphere ozone than previously believed. Ambient stratospheric ozone will depend less on the ambient chlorine amount and the predicted response to chlorine perturbations will be lessened. One-dimensional eddy-diffusion photochemical model calculations indicate a factor of 1.1 less sensitivity to chlorine than recently reported. For a steady-state CFM release at 1975 rates (750,000 tons/year) the eventual ozone depletion is now calculated to be 14%

    Selection of Trichogramma pretiosum lineages for control of Grapholita molesta in peach.

    Get PDF
    Grapholita molesta (Lepidoptera: Tortricidae) é uma das principais pragas do pessegueiro no Brasil, causando perdas de 3-5% da produção. Dentre os agentes de controle biológico Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) tem sido encontrado nos pomares de pessegueiros. O objetivo deste trabalho foi estudar a criação de T. pretiosum em ovos de G. molesta e Anagasta kuehniella (Lepidoptera: Pyralidae) e selecionar as linhagens de T. pretiosum com potencial de controle de G. molesta. A seleção de linhagens foi realizada com cinco populações de T. pretiosum coletadas em pomares de pessegueiro cultivados sob o sistema orgânico de produção. O estudo foi realizado em condições controladas de temperatura (25 ± 2°C), umidade relativa (70 ± 10%) e fotofase (14h). Ovos de G. molesta são hospedeiros adequados ao desenvolvimento de T. pretiosum uma vez que, nas variáveis estudadas número de ovos parasitados, porcentagem de parasitismo e razão sexual, os valores foram equivalentes aos criados em ovos de A. kuehniella . O maior parasitismo de ovos de G. molesta ocorreu com posturas de até 48h de desenvolvimento embrionário. Das linhagens de T. pretiosum coletadas, H08, PO8, PEL e L3M apresentaram melhor desempenho biológico, sendo, portanto, indicadas para estudos de semi-campo e campo para o controle biológico da mariposa-oriental

    Chirality in Bare and Passivated Gold Nanoclusters

    Get PDF
    Chiral structures have been found as the lowest-energy isomers of bare (Au28_{28} and Au55)andthiolpassivated(Au_{55}) and thiol-passivated (Au_{28}(SCH3)_{3})_{16}andAu and Au_{38}(SCH_{3})_{24}) gold nanoclusters. The degree of chirality existing in the chiral clusters was calculated using the Hausdorff chirality measure. We found that the index of chirality is higher in the passivated clusters and decreases with the cluster size. These results are consistent with the observed chiroptical activity recently reported for glutahione-passivated gold nanoclusters, and provide theoretical support for the existence of chirality in these novel compounds.Comment: 5 pages, 1 figure. Submitted to PR

    The N/O Plateau of Blue Compact Galaxies: Monte Carlo Simulations of the Observed Scatter

    Get PDF
    Chemical evolution models and Monte Carlo simulation techniques have been combined for the first time to study the distribution of blue compact galaxies on the N/O plateau. Each simulation comprises 70 individual chemical evolution models. For each model, input parameters relating to a galaxy's star formation history (bursting or continuous star formation, star formation efficiency), galaxy age, and outflow rate are chosen randomly from ranges predetermined to be relevant. Predicted abundance ratios from each simulation are collectively overplotted onto the data to test its viability. We present our results both with and without observational scatter applied to the model points. Our study shows that most trial combinations of input parameters, including a simulation comprising only simple models with instantaneous recycling, are successful in reproducing the observed morphology of the N/O plateau once observational scatter is added. Therefore simulations which include delay of nitrogen injection are no longer favored over those which propose that most nitrogen is produced by massive stars, if only the plateau morphology is used as the principal constraint. The one scenario which clearly cannot explain plateau morphology is one in which galaxy ages are allowed to range below 250 Myr. We conclude that the present data for the N/O plateau are insufficient by themselves for identifying the portion of the stellar mass spectrum most responsible for cosmic nitrogen production.Comment: 41 pages, 15 figures; accepted by ApJ, to appear Aug. 20, 200
    corecore