research

The reaction Cl + H2CO yields HCl + HCO: Decreased sensitivity of stratospheric ozone to chlorine perturbations

Abstract

The absolute rate constant for the reaction Cl + H2CO yields HCl + HCO was determined by the flash-photolysis resonance fluorescence method to be 7.5 plus or minus 0.9 (2 sigma) times 10 to the minus 11th power cu cm/molecule sec at 298 K and to have a negligible temperature dependence. This rate which is more than 2000 times faster than the rate of Cl + CH4 indicates that formaldehyde (H2CO) will compete significantly with methane (CH4) for the conversion of active chlorine in the stratosphere to the inactive reservoir HCl. Chlorine will thus be a less efficient destroyer of stratosphere ozone than previously believed. Ambient stratospheric ozone will depend less on the ambient chlorine amount and the predicted response to chlorine perturbations will be lessened. One-dimensional eddy-diffusion photochemical model calculations indicate a factor of 1.1 less sensitivity to chlorine than recently reported. For a steady-state CFM release at 1975 rates (750,000 tons/year) the eventual ozone depletion is now calculated to be 14%

    Similar works