116 research outputs found

    Delayed Toxicity Associated with Soluble Anthrax Toxin Receptor Decoy-Ig Fusion Protein Treatment

    Get PDF
    Soluble receptor decoy inhibitors, including receptor-immunogloubulin (Ig) fusion proteins, have shown promise as candidate anthrax toxin therapeutics. These agents act by binding to the receptor-interaction site on the protective antigen (PA) toxin subunit, thereby blocking toxin binding to cell surface receptors. Here we have made the surprising observation that co-administration of receptor decoy-Ig fusion proteins significantly delayed, but did not protect, rats challenged with anthrax lethal toxin. The delayed toxicity was associated with the in vivo assembly of a long-lived complex comprised of anthrax lethal toxin and the receptor decoy-Ig inhibitor. Intoxication in this system presumably results from the slow dissociation of the toxin complex from the inhibitor following their prolonged circulation. We conclude that while receptor decoy-Ig proteins represent promising candidates for the early treatment of B. anthracis infection, they may not be suitable for therapeutic use at later stages when fatal levels of toxin have already accumulated in the bloodstream

    Characterization of Spermatogonial Stem Cells Lacking Intercellular Bridges and Genetic Replacement of a Mutation in Spermatogonial Stem Cells

    Get PDF
    Stem cells have a potential of gene therapy for regenerative medicine. Among various stem cells, spermatogonial stem cells have a unique characteristic in which neighboring cells can be connected by intercellular bridges. However, the roles of intercellular bridges for stem cell self-renewal, differentiation, and proliferation remain to be elucidated. Here, we show not only the characteristics of testis-expressed gene 14 (TEX14) null spermatogonial stem cells lacking intercellular bridges but also a trial application of genetic correction of a mutation in spermatogonial stem cells as a model for future gene therapy. In TEX14 null testes, some genes important for undifferentiated spermatogonia as well as some differentiation-related genes were activated. TEX14 null spermatogonial stem cells, surprisingly, could form chain-like structures even though they do not form stable intercellular bridges. TEX14 null spermatogonial stem cells in culture possessed both characteristics of undifferentiated and differentiated spermatogonia. Long-term culture of TEX14 null spermatogonial stem cells could not be established likely secondary to up-regulation of CDK4 inhibitors and down-regulation of cyclin E. These results suggest that intercellular bridges are essential for both maintenance of spermatogonial stem cells and their proliferation. Lastly, a mutation in Tex14+/− spermatogonial stem cells was successfully replaced by homologous recombination in vitro. Our study provides a therapeutic potential of spermatogonial stem cells for reproductive medicine if they can be cultured long-term

    A New Model of Delirium Care in the Acute Geriatric Setting: Geriatric Monitoring Unit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Delirium is a common and serious condition, which affects many of our older hospitalised patients. It is an indicator of severe underlying illness and requires early diagnosis and prompt treatment, associated with poor survival, functional outcomes with increased risk of institutionalisation following the delirium episode in the acute care setting. We describe a new model of delirium care in the acute care setting, titled Geriatric Monitoring Unit (GMU) where the important concepts of delirium prevention and management are integrated. We hypothesize that patients with delirium admitted to the GMU would have better clinical outcomes with less need for physical and psychotropic restraints compared to usual care.</p> <p>Methods/Design</p> <p>GMU models after the Delirium Room with adoption of core interventions from Hospital Elder Life Program and use of evening bright light therapy to consolidate circadian rhythm and improve sleep in the elderly patients. The novelty of this approach lies in the amalgamation of these interventions in a multi-faceted approach in acute delirium management. GMU development thus consists of key considerations for room design and resource planning, program specific interventions and daily core interventions. Assessments undertaken include baseline demographics, comorbidity scoring, duration and severity of delirium, cognitive, functional measures at baseline, 6 months and 12 months later. Additionally we also analysed the pre and post-GMU implementation knowledge and attitude on delirium care among staff members in the geriatric wards (nurses, doctors) and undertook satisfaction surveys for caregivers of patients treated in GMU.</p> <p>Discussion</p> <p>This study protocol describes the conceptualization and implementation of a specialized unit for delirium management. We hypothesize that such a model of care will not only result in better clinical outcomes for the elderly patient with delirium compared to usual geriatric care, but also improved staff knowledge and satisfaction. The model may then be transposed across various locations and disciplines in the acute hospital where delirious patients could be sited.</p> <p>Trial Registration</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN52323811">ISRCTN52323811</a></p

    Urinary volatile organic compounds for the detection of prostate cancer

    Get PDF
    © 2015 Khalid et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The aim of this work was to investigate volatile organic compounds (VOCs) emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA) level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59) and cancer-free controls (n = 43), on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF) and Linear Discriminant Analysis (LDA) classification techniques. PSA alone had an accuracy of 62-64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63-65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states

    Cyclical and Patch-Like GDNF Distribution along the Basal Surface of Sertoli Cells in Mouse and Hamster Testes

    Get PDF
    BACKGROUND AND AIMS: In mammalian spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) is one of the major Sertoli cell-derived factors which regulates the maintenance of undifferentiated spermatogonia including spermatogonial stem cells (SSCs) through GDNF family receptor α1 (GFRα1). It remains unclear as to when, where and how GDNF molecules are produced and exposed to the GFRα1-positive spermatogonia in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: Here we show the cyclical and patch-like distribution of immunoreactive GDNF-positive signals and their close co-localization with a subpopulation of GFRα1-positive spermatogonia along the basal surface of Sertoli cells in mice and hamsters. Anti-GDNF section immunostaining revealed that GDNF-positive signals are mainly cytoplasmic and observed specifically in the Sertoli cells in a species-specific as well as a seminiferous cycle- and spermatogenic activity-dependent manner. In contrast to the ubiquitous GDNF signals in mouse testes, high levels of its signals were cyclically observed in hamster testes prior to spermiation. Whole-mount anti-GDNF staining of the seminiferous tubules successfully visualized the cyclical and patch-like extracellular distribution of GDNF-positive granular deposits along the basal surface of Sertoli cells in both species. Double-staining of GDNF and GFRα1 demonstrated the close co-localization of GDNF deposits and a subpopulation of GFRα1-positive spermatogonia. In both species, GFRα1-positive cells showed a slender bipolar shape as well as a tendency for increased cell numbers in the GDNF-enriched area, as compared with those in the GDNF-low/negative area of the seminiferous tubules. CONCLUSION/SIGNIFICANCE: Our data provide direct evidence of regionally defined patch-like GDNF-positive signal site in which GFRα1-positive spermatogonia possibly interact with GDNF in the basal compartment of the seminiferous tubules

    Epigenetic Mechanisms Regulate Stem Cell Expressed Genes Pou5f1 and Gfra1 in a Male Germ Cell Line

    Get PDF
    Male fertility is declining and an underlying cause may be due to environment-epigenetic interactions in developing sperm, yet nothing is known of how the epigenome controls gene expression in sperm development. Histone methylation and acetylation are dynamically regulated in spermatogenesis and are sensitive to the environment. Our objectives were to determine how histone H3 methylation and acetylation contribute to the regulation of key genes in spermatogenesis. A germ cell line, GC-1, was exposed to either the control, or the chromatin modifying drugs tranylcypromine (T), an inhibitor of the histone H3 demethylase KDM1 (lysine specific demethylase 1), or trichostatin (TSA), an inhibitor of histone deacetylases, (HDAC). Quantitative PCR (qPCR) was used to identify genes that were sensitive to treatment. As a control for specificity the Myod1 (myogenic differentiation 1) gene was analyzed. Chromatin immunoprecipitation (ChIP) followed by qPCR was used to measure histone H3 methylation and acetylation at the promoters of target genes and the control, Myod1. Remarkably, the chromatin modifying treatment specifically induced the expression of spermatogonia expressed genes Pou5f1 and Gfra1. ChIP-qPCR revealed that induction of gene expression was associated with a gain in gene activating histone H3 methylation and acetylation in Pou5f1 and Gfra1 promoters, whereas CpG DNA methylation was not affected. Our data implicate a critical role for histone H3 methylation and acetylation in the regulation of genes expressed by spermatogonia – here, predominantly mediated by HDAC-containing protein complexes

    Pseudoneoplastic lesions of the testis and paratesticular structures

    Get PDF
    Pseudotumors or tumor-like proliferations (non-neoplastic masses) and benign mimickers (non-neoplastic cellular proliferations) are rare in the testis and paratesticular structures. Clinically, these lesions (cysts, ectopic tissues, and vascular, inflammatory, or hyperplastic lesions) are of great interest for the reason that, because of the topography, they may be relevant as differential diagnoses. The purpose of this paper is to present an overview of the pseudoneoplasic entities arising in the testis and paratesticular structures; emphasis is placed on how the practicing pathologist may distinguish benign mimickers and pseudotumors from true neoplasia. These lesions can be classified as macroscopic or microscopic mimickers of neoplasia
    corecore