246 research outputs found
Natural Nuclear Reactor Oklo and Variation of Fundamental Constants Part 1: Computation of Neutronics of Fresh Core
Using modern methods of reactor physics we have performed full-scale
calculations of the natural reactor Oklo. For reliability we have used recent
version of two Monte Carlo codes: Russian code MCU REA and world wide known
code MCNP (USA). Both codes produce similar results. We have constructed a
computer model of the reactor Oklo zone RZ2 which takes into account all
details of design and composition. The calculations were performed for three
fresh cores with different uranium contents. Multiplication factors,
reactivities and neutron fluxes were calculated. We have estimated also the
temperature and void effects for the fresh core. As would be expected, we have
found for the fresh core a significant difference between reactor and Maxwell
spectra, which was used before for averaging cross sections in the Oklo
reactor. The averaged cross section of Sm-149 and its dependence on the shift
of resonance position (due to variation of fundamental constants) are
significantly different from previous results.
Contrary to results of some previous papers we find no evidence for the
change of the fine structure constant in the past and obtain new, most accurate
limits on its variation with time:
-4 10^{-17}year^{-1} < d alpha/dt/alpha < 3 10^{-17} year^{-1}
A further improvement in the accuracy of the limits can be achieved by taking
account of the core burnup. These calculations are in progress.Comment: 25 pages, 14 figures, 12 tables, minor corrections, typos correcte
Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux
We report results from 120 hours of livetime with the Goldstone Lunar
Ultra-high energy neutrino Experiment (GLUE). The experiment searches for <10
ns microwave pulses from the lunar regolith, appearing in coincidence at two
large radio telescopes separated by 22 km and linked by optical fiber. Such
pulses would arise from subsurface electromagnetic cascades induced by
interactions of >= 100 EeV neutrinos in the lunar regolith. No candidates are
yet seen, and the implied limits constrain several current models for
ultra-high energy neutrino fluxes.Comment: 4 pages, 4 figures, revtex4 style. New intro section, Fig. 2, Fig 4;
in final PRL revie
The Celestial Reference Frame at 24 and 43 GHz. II. Imaging
We have measured the sub-milli-arcsecond structure of 274 extragalactic
sources at 24 and 43 GHz in order to assess their astrometric suitability for
use in a high frequency celestial reference frame (CRF). Ten sessions of
observations with the Very Long Baseline Array have been conducted over the
course of 5 years, with a total of 1339 images produced for the 274
sources. There are several quantities that can be used to characterize the
impact of intrinsic source structure on astrometric observations including the
source flux density, the flux density variability, the source structure index,
the source compactness, and the compactness variability. A detailed analysis of
these imaging quantities shows that (1) our selection of compact sources from
8.4 GHz catalogs yielded sources with flux densities, averaged over the
sessions in which each source was observed, of about 1 Jy at both 24 and 43
GHz, (2) on average the source flux densities at 24 GHz varied by 20%-25%
relative to their mean values, with variations in the session-to-session flux
density scale being less than 10%, (3) sources were found to be more compact
with less intrinsic structure at higher frequencies, and (4) variations of the
core radio emission relative to the total flux density of the source are less
than 8% on average at 24 GHz. We conclude that the reduction in the effects due
to source structure gained by observing at higher frequencies will result in an
improved CRF and a pool of high-quality fiducial reference points for use in
spacecraft navigation over the next decade.Comment: 63 pages, 18 figures, 6 tables, accepted by the Astronomical Journa
Impact of solid waste disposal on nutrient dynamics in a sandy catchment
Groundwaters impacted by mature landfill leachate are generally enriched in ammonium. In order to assess the dynamics of ammonium exchanges between leachates and the water system inside a sandy permeable catchment we measured ammonium, nitrate and chloride concentrations in the stream and in sediment pore waters of the streambed of a landfill impacted aquifer. Geophysical investigation methods complemented the biogeochemical survey. The studied zone is a 23 km² catchment located in a coastal lagoon area sensitive to eutrophication risk. Ammonium concentrations in the river were up to 800 µmol l−1 during low water period in summer. Three surveys of the river chemistry showed a regular increase in ammonium, nitrate and chloride concentrations along a 1 km section of the watercourse, downstream the landfill, implying that the leachate plume exfiltrates along this section. Sediment cores collected within this section showed all an increase in ammonium concentrations with depth in pore waters as a consequence of the landfill leachate dispersion, as attested by a simultaneous increase in chloride concentrations. Nitrate enrichment in the river water was due to nitrification of ammonium at the interface between groundwater and streamwater. The apparent nitrification rate obtained was within values reported for turbid estuaries, although the river contained very little suspended particulate matter. Actually, pore water chemistry suggests that nitrification occurred for the most part in subsurface permeable sediments, rather than in stream water. The overall topographic, hydrological, geochemical, and geoelectrical data set permit to estimate the extension of the chloride and ammonium plume. The estimation of the apparent ammonium plume velocity is 23 m year−1 whereas the chloride plume velocity should be 50 m year−1. The river is the outlet of the impacted groundwaters. Considering that the input of ammonium from the landfill is balanced by the present day output via the river, the residence time of ammonium in the aquifer is between 7 and 18 years
Status of ANITA and ANITA-lite
We describe a new experiment to search for neutrinos with energies above 3 x
10^18 eV based on the observation of short duration radio pulses that are
emitted from neutrino-initiated cascades. The primary objective of the
ANtarctic Impulse Transient Antenna (ANITA) mission is to measure the flux of
Greisen-Zatsepin-Kuzmin (GZK) neutrinos and search for neutrinos from Active
Galactic Nuclei (AGN). We present first results obtained from the successful
launch of a 2-antenna prototype instrument (called ANITA-lite) that circled
Antarctica for 18 days during the 03/04 Antarctic campaign and show preliminary
results from attenuation length studies of electromagnetic waves at radio
frequencies in Antarctic ice. The ANITA detector is funded by NASA, and the
first flight is scheduled for December 2006.Comment: 9 pages, 8 figures, to be published in Proceedings of International
School of Cosmic Ray Astrophysics, 14th Course: "Neutrinos and Explosive
Events in the Universe", Erice, Italy, 2-13 July 200
Observations of the Askaryan Effect in Ice
We report on the first observations of the Askaryan effect in ice: coherent impulsive radio Cherenkov radiation from the charge asymmetry in an electromagnetic (EM) shower. Such radiation has been observed in silica sand and rock salt, but this is the first direct observation from an EM shower in ice. These measurements are important since the majority of experiments to date that rely on the effect for ultra-high energy neutrino detection are being performed using ice as the target medium. As part of the complete validation process for the Antarctic Impulsive Transient Antenna (ANITA) experiment, we performed an experiment at the Stanford Linear Accelerator Center (SLAC) in June 2006 using a 7.5 metric ton ice target, yielding results fully consistent with theoretical expectations
Accelerator measurements of magnetically-induced radio emission from particle cascades with applications to cosmic-ray air showers
For fifty years, cosmic-ray air showers have been detected by their radio
emission. We present the first laboratory measurements that validate
electrodynamics simulations used in air shower modeling. An experiment at SLAC
provides a beam test of radio-frequency (RF) radiation from charged particle
cascades in the presence of a magnetic field, a model system of a cosmic-ray
air shower. This experiment provides a suite of controlled laboratory
measurements to compare to particle-level simulations of RF emission, which are
relied upon in ultra-high-energy cosmic-ray air shower detection. We compare
simulations to data for intensity, linearity with magnetic field, angular
distribution, polarization, and spectral content. In particular, we confirm
modern predictions that the magnetically induced emission in a dielectric forms
a cone that peaks at the Cherenkov angle and show that the simulations
reproduce the data within systematic uncertainties.Comment: 5 pages, 7 figure
New Limits on the Ultra-high Energy Cosmic Neutrino Flux from the ANITA Experiment
We report initial results of the first flight of the Antarctic Impulsive
Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which
searched for evidence of a diffuse flux of cosmic neutrinos above energies of 3
EeV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan
effect in neutrino-induced electromagnetic showers within the Antarctic ice
sheets. We report here on our initial analysis, which was performed as a blind
search of the data. No neutrino candidates are seen, with no detected physics
background. We set model-independent limits based on this result. Upper limits
derived from our analysis rule out the highest cosmogenic neutrino models. In a
background horizontal-polarization channel, we also detect six events
consistent with radio impulses from ultra-high energy extensive air showers.Comment: 4 pages, 2 table
Observations of the Askaryan Effect in Ice
We report on the first observations of the Askaryan effect in ice: coherent
impulsive radio Cherenkov radiation from the charge asymmetry in an
electromagnetic (EM) shower. Such radiation has been observed in silica sand
and rock salt, but this is the first direct observation from an EM shower in
ice. These measurements are important since the majority of experiments to date
that rely on the effect for ultra-high energy neutrino detection are being
performed using ice as the target medium. As part of the complete validation
process for the Antarctic Impulsive Transient Antenna (ANITA) experiment, we
performed an experiment at the Stanford Linear Accelerator Center (SLAC) in
June 2006 using a 7.5 metric ton ice target, yielding results fully consistent
with theoretical expectations.Comment: 4 pages, 5 figures, minor correction
- …