638 research outputs found

    Assessment of MISR and MODIS cloud top heights through inter-comparison with a back-scattering lidar at SIRTA

    Get PDF
    One year of back-scattering lidar cloud boundaries and optical depth were analysed for coincident inter-comparison with the latest processed versions of the NASA-TERRA MISR stereo and MODIS CO2-slicing operational cloud top heights. Optically thin clouds were found to be accurately characterised by the MISR cloud top height product as long as no other cloud was present at lower altitude. MODIS cloud top heights were generally found within the cloud extent retrieved by lidar; agreement improved as cloud optical depth increased and when CO2-slicing was the only technique used for the retrieval. The difference between Lidar and MISR cloud top heights was found to lie between −0.1 and 0.4 km for low clouds and between 0.1 and 3.1 km for high clouds. The difference between Lidar and MODIS cloud top heights was found to lie between −1.2 and 1.5 km for low clouds and between −1.4 and 2.7 km for high clouds

    Minimal subtraction and the Callan-Symanzik equation

    Get PDF
    The usual proof of renormalizability using the Callan-Symanzik equation makes explicit use of normalization conditions. It is shown that demanding that the renormalization group functions take the form required for minimal subtraction allows one to prove renormalizability using the Callan-Symanzik equation, without imposing normalization conditions. Scalar field theory and quantum electrodynamics are treated.Comment: 6 pages, plain Te

    Evaluation of Extratropical Cyclone Precipitation in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models

    Full text link
    The representation of extratropical cyclones (ETCs) precipitation in general circulation models (GCMs) and a weather research and forecasting (WRF) model is analyzed. This work considers the link between ETC precipitation and dynamical strength and tests if parameterized convection affects this link for ETCs in the North Atlantic Basin. Lagrangian cyclone tracks of ETCs in ERA-Interim reanalysis (ERAI), the GISS and GFDL CMIP5 models, and WRF with two horizontal resolutions are utilized in a compositing analysis. The 20-km resolution WRF model generates stronger ETCs based on surface wind speed and cyclone precipitation. The GCMs and ERAI generate similar composite means and distributions for cyclone precipitation rates, but GCMs generate weaker cyclone surface winds than ERAI. The amount of cyclone precipitation generated by the convection scheme differs significantly across the datasets, with GISS generating the most, followed by ERAI and then GFDL. The models and reanalysis generate relatively more parameterized convective precipitation when the total cyclone-averaged precipitation is smaller. This is partially due to the contribution of parameterized convective precipitation occurring more often late in the ETC life cycle. For reanalysis and models, precipitation increases with both cyclone moisture and surface wind speed, and this is true if the contribution from the parameterized convection scheme is larger or not. This work shows that these different models generate similar total ETC precipitation despite large differences in the parameterized convection, and these differences do not cause unexpected behavior in ETC precipitation sensitivity to cyclone moisture or surface wind speed

    The fractional quantum Hall effect in infinite layer systems

    Full text link
    Stacked two dimensional electron systems in transverse magnetic fields exhibit three dimensional fractional quantum Hall phases. We analyze the simplest such phases and find novel bulk properties, e.g., irrational braiding. These phases host ``one and a half'' dimensional surface phases in which motion in one direction is chiral. We offer a general analysis of conduction in the latter by combining sum rule and renormalization group arguments, and find that when interlayer tunneling is marginal or irrelevant they are chiral semi-metals that conduct only at T > 0 or with disorder.Comment: RevTeX 3.0, 4p., 2 figs with epsf; reference to the detailed companion paper cond-mat/0006506 adde

    Probing Spin-Charge Separation in Tunnel-Coupled Parallel Quantum Wires

    Full text link
    Interactions in one-dimensional (1D) electron systems are expected to cause a dynamical separation of electronic spin and charge degrees of freedom. A promising system for experimental observation of this non-Fermi-liquid effect consists of two quantum wires coupled via tunneling through an extended uniform barrier. Here we consider the minimal model of an interacting 1D electron system exhibiting spin-charge separation and calculate the differential tunneling conductance as well as the density-density response function. Both quantities exhibit distinct strong features arising from spin-charge separation. Our analysis of these features within the minimal model neglects interactions between electrons of opposite chirality and applies therefore directly to chiral 1D electron systems realized, e.g., at the edge of integer quantum-Hall systems. Physical insight gained from our results is useful for interpreting current experiment in quantum wires as our main conclusions still apply with nonchiral interactions present. In particular, we discuss the effect of charging due to applied voltages, and the possibility to observe spin-charge separation in a time-resolved experiment.Comment: 9 pages, 3 figures, expanded version with many detail

    Alteration of superconductivity of suspended carbon nanotubes by deposition of organic molecules

    Full text link
    We have altered the superconductivity of a suspended rope of single walled carbon nanotubes, by coating it with organic polymers. Upon coating, the normal state resistance of the rope changes by less than 20 percent. But superconductivity, which on the bare rope shows up as a substantial resistance decrease below 300 mK, is gradualy suppressed. We correlate this to the suppression of radial breathing modes, measured with Raman Spectroscopy on suspended Single and Double-walled carbon nanotubes. This points to the breathing phonon modes as being responsible for superconductivity in carbon nanotubes

    A photonic crystal Josephson traveling wave parametric amplifier

    Full text link
    An amplifier combining noise performances as close as possible to the quantum limit with large bandwidth and high saturation power is highly desirable for many solid state quantum technologies such as high fidelity qubit readout or high sensitivity electron spin resonance for example. Here we introduce a new Traveling Wave Parametric Amplifier based on Superconducting QUantum Interference Devices. It displays a 3 GHz bandwidth, a -102 dBm 1-dB compression point and added noise near the quantum limit. Compared to previous state-of-the-art, it is an order of magnitude more compact, its characteristic impedance is in-situ tunable and its fabrication process requires only two lithography steps. The key is the engineering of a gap in the dispersion relation of the transmission line. This is obtained using a periodic modulation of the SQUID size, similarly to what is done with photonic crystals. Moreover, we provide a new theoretical treatment to describe the non-trivial interplay between non-linearity and such periodicity. Our approach provides a path to co-integration with other quantum devices such as qubits given the low footprint and easy fabrication of our amplifier.Comment: 6 pages, 4 figures, Appendixe

    Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    Get PDF
    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW
    • …
    corecore