9 research outputs found

    Control of Cortical Axon Elongation by a GABA-Driven Ca<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-weight: inherit; font-style: inherit; font-size: 0.85em; font-family: inherit; line-height: 0; text-align: inherit; vertical-align: super;">2+/Calmodulin-Dependent Protein Kinase Cascade</sup>

    Get PDF
    Ca(2+) signaling plays important roles during both axonal and dendritic growth. Yet, whether and how Ca(2+) rises may trigger and contribute to the development of long range cortical connections remains largely unknown. Here we demonstrate that two separate limbs of CaMK kinase (CaMKK) - CaMKI cascades, CaMKK-CaMKIα and CaMKK-CaMKIγ, critically coordinate axonal and dendritic morphogenesis of cortical neurons, respectively. The axon-specific morphological phenotype required a diffuse cytoplasmic localization and a strikingly α-isoform-specific kinase activity of CaMKI. Unexpectedly, treatment with muscimol, a GABA(A) receptor agonist, selectively stimulated elongation of axons but not of dendrites, and the CaMKK-CaMKIα cascade critically mediated this axonogenic effect. Consistent with these findings, during early brain development, in vivo knockdown of CaMKIα significantly impaired the terminal axonal extension, and thereby perturbed the refinement of the interhemispheric callosal projections into the contralateral cortices. Our findings thus indicate a novel role for the GABA-driven CaMKK-CaMKIα cascade as a mechanism critical for accurate cortical axon pathfinding, an essential process which may contribute to fine-tuning the formation of interhemispheric connectivity during the perinatal development of the central nervous system

    Transgenic supplementation of SIRT1 fails to alleviate acute loss of nigrostriatal dopamine neurons and gliosis in a mouse model of MPTP-induced parkinsonism [v1; ref status: indexed, http://f1000r.es/5a9]

    No full text
    Background Dopamine (DA) neuron-selective uptake and toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes parkinsonism in humans. Loss of DA neurons via mitochondrial damage and oxidative stress is reproduced by systemic injection of MPTP in animals, which serves as models of parkinsonism and Parkinson’s disease (PD). This study aimed to test whether pan-neural supplementation of the longevity-related, pleiotropic deacetylase SIRT1, which confers partial tolerance to at least three models of stroke and neurodegeneration, could also alleviate MPTP-induced acute pathological changes in nigrostriatal DA neurons and neighboring glia. Results We employed a line of prion promoter-driven Sirt1-transgenic (Sirt1Tg) mice that chronically overexpress murine SIRT1 in the brain and spinal cord. Sirt1Tg and wild-type (WT) male littermates (3‒4 months old) were subjected to intraperitoneal injection of MPTP. Acute histopathological changes in the midbrain and striatum (caudoputamen) were assessed with serial coronal sections triply labeled for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP), and nuclear DNA. In the substantia nigra pars compacta (SNpc) of the midbrain, the number of TH-positive neurons and the reactive gliosis were comparable between the Sirt1Tg and WT littermates. In the striatum, the relative fluorescence intensity of TH-positive nerve terminals and the level of gliosis did not differ by the genotypes. Conclusions Sirt1Tg and WT littermate mice exhibited comparable acute histopathological reactions to the systemic injection of MPTP, loss of TH-positive neurons and reactive gliosis. Thus, the genetic supplementation of SIRT1 does not confer histologically recognizable protection on nigrostriatal DA neurons against acute toxicity of MPTP

    Additional file 3: Figure S1. of Facilitation of axon outgrowth via a Wnt5a-CaMKK-CaMKIα pathway during neuronal polarization

    No full text
    Activation of Wnt5a-Ca2+ signaling in immature cultured cortical neurons. Addition of Wnt5a (100 ng/ml, final concentration) to the culture medium evoked a sustained Ca2+ oscillatory response in immature cultured cortical neurons (Cell #1 and Cell #2). Vertical lines indicate the time points of Wnt5a application and of the respective image frames. Scale bar: 5 μm. (PDF 74 kb

    Additional file 1: Movie 1. of Facilitation of axon outgrowth via a Wnt5a-CaMKK-CaMKIÎą pathway during neuronal polarization

    No full text
    Fluo-4 Ca2+ imaging of immature migrating cortical neurons during spontaneous Ca2+ activity. Movie 1 (related to Fig. 1c) shows transient Fluo-4 fluorescence signals induced by spontaneous Ca2+ rises, in migrating neurons in CP and IZ as identified by TagRFP expression. Migrating neurons in CP and IZ are magnified from boxed areas in the left panel of the movie. (AVI 3964 kb
    corecore