10 research outputs found

    Absence of the PsbQ protein results in destabilization of the PsbV protein and decreased oxygen evolution activity in cyanobacterial photosystem II

    Get PDF
    We have previously reported that cyanobacterial photosystem II (PS II) contains a protein homologous to PsbQ, the extrinsic 17-kDa protein found in higher plant and green algal PS II (Kashino, Y., Lauber, W. M., Carroll, J. A., Wang, Q., Whitmarsh, J., Satoh, K., and Pakrasi, H. B. (2002) Biochemistry 41, 8004-8012) and that it has regulatory role(s) on the water oxidation machinery (Thornton, L. E., Ohkawa, H., Roose, J. L., Kashino, Y., Keren, N., and Pakrasi, H. B. (2004) Plant Cell 16, 2164-2175). In this work, the localization and the function of PsbQ were assessed using the cyanobacterium Synechocystis sp. PCC 6803. From the predicted sequence, cyanobacterial PsbQ is expected to be a lipoprotein on the luminal side of the thylakoid membrane. Indeed, experiments in this work show that upon Triton X-114 fractionation of thylakoid membranes, PsbQ partitioned in the hydrophobic phase, and trypsin digestion revealed that PsbQ was highly exposed to the luminal space of thylakoid membranes. Detailed functional assays were conducted on the psbQ deletion mutant (ΔpsbQ) to analyze its water oxidation machinery. PS II complexes purified from ΔpsbQ mutant cells had impaired oxygen evolution activity and were remarkably sensitive to NH2OH, which indicates destabilization of the water oxidation machinery. Additionally, the cytochrome c550 (PsbV) protein partially dissociated from purified ΔpsbQ PS II complexes, suggesting that PsbQ contributes to the stability of PsbV in cyanobacterial PS II. Therefore, we conclude that the major function of PsbQ is to stabilize the PsbV protein, thereby contributing to the protection of the catalytic Mn 4-Ca1-Clx cluster of the water oxidation machinery. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc

    Ycf12 is a core subunit in the photosystem II complex

    Get PDF
    AbstractThe latest crystallographic model of the cyanobacterial photosystem II (PS II) core complex added one transmembrane low molecular weight (LMW) component to the previous model, suggesting the presence of an unknown transmembrane LMW component in PS II. We have investigated the polypeptide composition in highly purified intact PS II core complexes from Thermosynechococcus elongatus, the species which yielded the PS II crystallographic models described above, to identify the unknown component. Using an electrophoresis system specialized for separation of LMW hydrophobic proteins, a novel protein of ∼5 kDa was identified as a PS II component. Its N-terminal amino acid sequence was identical to that of Ycf12. The corresponding gene is known as one of the ycf (hypothetical chloroplast reading frame) genes, ycf12, and is widely conserved in chloroplast and cyanobacterial genomes. Nonetheless, the localization and function of the gene product have never been assigned. Our finding shows, for the first time, that ycf12 is actually expressed as a component of the PS II complex in the cell, revealing that a previously unidentified transmembrane protein exists in the PS II core complex

    Structure of the far-red light utilizing photosystem I of Acaryochloris marina

    Get PDF
    赤外光駆動型光合成をクライオ電顕で捉えることに成功 --低いエネルギーで通常の光化学反応が駆動される仕組み--. 京都大学プレスリリース. 2021-04-21.Acaryochloris marina is one of the cyanobacterial species that can use far-red light to drive photochemical reactions for oxygenic photosynthesis. Here, we report the structure of A. marina photosystem I (PSI) reaction center, determined by cryo-electron microscopy at 2.58 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments distinct from other type I reaction centers. The paired chlorophyll, or special pair (also referred to as P740 in this case), is a dimer of chlorophyll d and its epimer chlorophyll d′. The primary electron acceptor is pheophytin a, a metal-less chlorin. We show the architecture of this PSI reaction center is composed of 11 subunits and we identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis

    Advantageous characteristics of the diatom Chaetoceros gracilis as a sustainable biofuel producer

    Get PDF
    [Background]Diatoms have attracted interest as biofuel producers. Here, the contents of lipids and photosynthetic pigments were analyzed in a marine centric diatom, Chaetoceros gracilis. This diatom can be genetically engineered using our previously reported transformation technique and has a potential to produce valuable materials photosynthetically. Sustainable culture conditions for cost-effective production of biological materials under autotrophic conditions with atmospheric carbon dioxide were investigated in the laboratory. A large-scale, open-air culture was also performed. [Results]Cell population doubling time was ~10 h under continuous illumination without CO2enrichment, and large amounts of triacylglycerols (TAG) and fucoxanthin accumulated under a wide range of salinity and nutrient conditions, reaching ~200 and 18.5 mg/L, respectively. It was also shown that C. gracilis produced high amounts of TAG without the need for nitrogen or silica deprivation, which is frequently imposed to induce lipid production in many other microalgae. Furthermore, C. gracilis was confirmed to be highly tolerant to changes in environmental conditions, such as salinity. The diatom grew well and produced abundant lipids when using sewage water or liquid fertilizer derived from cattle feces without augmented carbon dioxide. High growth rates (doubling time <20 h) were obtained in a large-scale, open-air culture, in which light irradiance and temperature fluctuated and were largely different from laboratory conditions. [Conclusions]The ability of this microalga to accumulate TAG without nutrient deprivation, which incurs added labor, high costs, and complicates scalability, is important for low-cost industrial applications. Furthermore, its high tolerance to changes in environmental conditions and high growth rates observed in large-scale, open-air culture implied scalability of this diatom for industrial applications. Therefore, C. gracilis would have great potential as a biofactory

    SDS-PAGE

    No full text
    corecore