5 research outputs found

    The Particulate Air Pollution Controversy

    No full text
    Scientists, regulators, legislators, and segments of industry and the lay public are attempting to understand and respond to epidemiology findings of associations between measures of modern particulate air pollutants (PM) and adverse health outcomes in urban dwellers. The associations have been interpreted to imply that tens of thousands of Americans are killed annually by small daily increments in PM. These epidemiology studies and their interpretations have been challenged, although it is accepted that high concentrations of air pollutants have claimed many lives in the past. Although reproducible and statistically significant, the relative risks associated with modern PM are very small and confounded by many factors. Neither toxicology studies nor human clinical investigations have identified the components and/or characteristics of PM that might be causing the health-effect associations. Currently, a massive worldwide research effort is under way in an attempt to identify whom might be harmed and by what substances and mechanisms. Finding the answers is important, because control measures have the potential not only to be costly but also to limit the availability of goods and services that are important to public health

    Seasonal and Regional Short-term Effects of Fine Particles on Hospital Admissions in 202 US Counties, 1999–2005

    No full text
    The authors investigated whether short-term effects of fine particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) on risk of cardiovascular and respiratory hospitalizations among the elderly varied by region and season in 202 US counties for 1999–2005. They fit 3 types of time-series models to provide evidence for 1) consistent particulate matter effects across the year, 2) different particulate matter effects by season, and 3) smoothly varying particulate matter effects throughout the year. The authors found statistically significant evidence of seasonal and regional variation in estimates of particulate matter effect. Respiratory disease effect estimates were highest in winter, with a 1.05% (95% posterior interval: 0.29, 1.82) increase in hospitalizations per 10-μg/m3 increase in same-day PM2.5. Cardiovascular diseases estimates were also highest in winter, with a 1.49% (95% confidence interval: 1.09, 1.89) increase in hospitalizations per 10-μg/m3 increase in same-day PM2.5, with associations also observed in other seasons. The strongest evidence of a relation between PM2.5 and hospitalizations was in the Northeast for both respiratory and cardiovascular diseases. Heterogeneity of PM2.5 effects on hospitalizations may reflect seasonal and regional differences in emissions and in particles’ chemical constituents. Results can help guide development of hypotheses and further epidemiologic studies on potential heterogeneity in the toxicity of constituents of the particulate matter mixture

    Environmental Health Studies

    No full text
    corecore