397 research outputs found

    Effectiveness of an Intervention to Increase Construction Workers' Use of Hearing Protection

    Full text link
    In this project we tested the effectiveness of a theory-based intervention (video, pamphlets, and guided practice session) to increase the use of hearing protection devices (HPDs) among Midwestern construction workers and a national group of plumber/pipefitter trainers. Posttest measures were collected 10--12 months following this intervention. Pender's Health Promotion Model (1987) provided the conceptual basis for development of the training program. A total of 837 highnoise- exposed workers were included in the analysis: 652 regional Midwestern construction workers and 185 national plumber/pipefitter trainers. Effectiveness of the intervention was determined through the sequence of analyses recommended by Braver and Braver (1988) for the Solomon Four-Group Design. Analysis of variance and covariance of postintervention use and intention to use HPDs and a meta-analytic test were done. These analyses indicated that the intervention significantly increased use of HPDs but had no effect on intention to use HPDs in the future. Pretesting had no effect on use. Actual or potential applications of this research include guidance in the development of successful theorybased interventions to increase use of HPDs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68025/2/10.1518_001872099779610969.pd

    Application of the U.S. EPA Mode of Action Framework for Purposes of Guiding Future Research: A Case Study Involving the Oral Carcinogenicity of Hexavalent Chromium

    Get PDF
    Mode of action (MOA) analysis provides a systematic description of key events leading to adverse health effects in animal bioassays for the purpose of informing human health risk assessment. Uncertainties and data gaps identified in the MOA analysis may also be used to guide future research to improve understanding of the MOAs underlying a specific toxic response and foster development of toxicokinetic and toxicodynamic models. An MOA analysis, consistent with approaches outlined in the MOA Framework as described in the Guidelines for Carcinogen Risk Assessment, was conducted to evaluate small intestinal tumors observed in mice chronically exposed to relatively high concentrations of hexavalent chromium (Cr(VI)) in drinking water. Based on review of the literature, key events in the MOA are hypothesized to include saturation of the reductive capacity of the upper gastrointestinal tract, absorption of Cr(VI) into the intestinal epithelium, oxidative stress and inflammation, cell proliferation, direct and/or indirect DNA modification, and mutagenesis. Although available data generally support the plausibility of these key events, several unresolved questions and data gaps were identified, highlighting the need for obtaining critical toxicokinetic and toxicodynamic data in the target tissue and in the low-dose range. Experimental assays that can address these data gaps are discussed along with strategies for comparisons between responsive and nonresponsive tissues and species. This analysis provides a practical application of MOA Framework guidance and is instructive for the design of studies to improve upon the information available for quantitative risk assessment

    Characterization of occupational exposures to cleaning products used for common cleaning tasks-a pilot study of hospital cleaners

    Get PDF
    Background: In recent years, cleaning has been identified as an occupational risk because of an increased incidence of reported respiratory effects, such as asthma and asthma-like symptoms among cleaning workers. Due to the lack of systematic occupational hygiene analyses and workplace exposure data, it is not clear which cleaning-related exposures induce or aggravate asthma and other respiratory effects. Currently, there is a need for systematic evaluation of cleaning products ingredients and their exposures in the workplace. The objectives of this work were to: a) identify cleaning products' ingredients of concern with respect to respiratory and skin irritation and sensitization; and b) assess the potential for inhalation and dermal exposures to these ingredients during common cleaning tasks. Methods: We prioritized ingredients of concern in cleaning products commonly used in several hospitals in Massachusetts. Methods included workplace interviews, reviews of product Materials Safety Data Sheets and the scientific literature on adverse health effects to humans, reviews of physico-chemical properties of cleaning ingredients, and occupational hygiene observational analyses. Furthermore, the potential for exposure in the workplace was assessed by conducting qualitative assessment of airborne exposures and semi-quantitative assessment of dermal exposures. Results: Cleaning products used for common cleaning tasks were mixtures of many chemicals, including respiratory and dermal irritants and sensitizers. Examples of ingredients of concern include quaternary ammonium compounds, 2-butoxyethanol, and ethanolamines. Cleaning workers are at risk of acute and chronic inhalation exposures to volatile organic compounds (VOC) vapors and aerosols generated from product spraying, and dermal exposures mostly through hands. Conclusion: Cleaning products are mixtures of many chemical ingredients that may impact workers' health through air and dermal exposures. Because cleaning exposures are a function of product formulations and product application procedures, a combination of product evaluation with workplace exposure assessment is critical in developing strategies for protecting workers from cleaning hazards. Our task based assessment methods allowed classification of tasks in different exposure categories, a strategy that can be employed by epidemiological investigations related to cleaning. The methods presented here can be used by occupational and environmental health practitioners to identify intervention strategies

    Respiratory and skin health among glass microfiber production workers: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Only a few studies have investigated non-malignant respiratory effects of glass microfibers and these have provided inconsistent results. Our objective was to assess the effects of exposure to glass microfibers on respiratory and skin symptoms, asthma and lung function.</p> <p>Methods</p> <p>A cross-sectional study of 102 workers from a microfiber factory (response rate 100%) and 76 office workers (73%) from four factories in Thailand was conducted. They answered a questionnaire on respiratory health, occupational exposures, and lifestyle factors, and performed spirometry. Measurements of respirable dust were available from 2004 and 2005.</p> <p>Results</p> <p>Workers exposed to glass microfibers experienced increased risk of cough (adjusted OR 2.04), wheezing (adjOR 2.20), breathlessness (adjOR 4.46), nasal (adjOR 2.13) and skin symptoms (adjOR 3.89) and ever asthma (adjOR 3.51), the risks of breathlessness (95%CI 1.68–11.86) and skin symptoms (1.70–8.90) remaining statistically significant after adjustment for confounders. There was an exposure-response relation between the risk of breathlessness and skin symptoms and increasing level of microfiber exposure. Workers exposed to sensitizing chemicals, including phenol-formaldehyde resin, experienced increased risk of cough (3.43, 1.20–9.87) and nasal symptoms (3.07, 1.05–9.00).</p> <p>Conclusion</p> <p>This study provides evidence that exposure to glass microfibers increases the risk of respiratory and skin symptoms, and has an exposure-response relation with breathlessness and skin symptoms. Exposure to sensitizing chemicals increased the risk of cough and nasal symptoms. The results suggest that occupational exposure to glass microfibers is related to non-malignant adverse health effects, and that implementing exposure control measures in these industries could protect the health of employees.</p

    Cardiotoxicity of Freon among refrigeration services workers: comparative cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Freon includes a number of gaseous, colorless chlorofluorocarbons. Although freon is generally considered to be a fluorocarbon of relatively low toxicity; significantly detrimental effects may occur upon over exposure. The purpose of the present study is to investigate whether occupational exposure to fluorocarbons can induce arterial hypertension, myocardial ischemia, cardiac arrhythmias, elevated levels of plasma lipids and renal dysfunction.</p> <p>Methods</p> <p>This comparative cross-sectional study was conducted at the cardiology clinic of the Suez Canal Authority Hospital (Egypt). The study included 23 apparently healthy male workers at the refrigeration services workshop who were exposed to fluorocarbons (FC 12 and FC 22) and 23 likewise apparently healthy male workers (unexposed), the control group. All the participants were interviewed using a pre-composed questionnaire and were subjected to a clinical examination and relevant laboratory investigations.</p> <p>Results</p> <p>There were no significant statistical differences between the groups studied regarding symptoms suggesting arterial hypertension and renal affection, although a significantly higher percentage of the studied refrigeration services workers had symptoms of arrhythmias. None of the workers had symptoms suggesting coronary artery disease. Clinical examination revealed that the refrigeration services workers had a significantly higher mean pulse rate compared to the controls, though no significant statistical differences were found in arterial blood pressure measurements between the two study groups. Exercise stress testing of the workers studied revealed normal heart reaction to the increased need for oxygen, while sinus tachycardia was detected in all the participants. The results of Holter monitoring revealed significant differences within subject and group regarding the number of abnormal beats detected throughout the day of monitoring (p < 0.001). There were no significant differences detected in the average heart rate during the monitoring period within subject or group. Most laboratory investigations revealed absence of significant statistical differences for lipid profile markers, serum electrolyte levels and glomerular lesion markers between the groups except for cholesterol and urinary β2-microglobulin (tubular lesion markers) levels which were significantly elevated in freon exposed workers.</p> <p>Conclusions</p> <p>Unprotected occupational exposure to chlorofluorocarbons can induce cardiotoxicity in the form of cardiac arrhythmias. The role of chlorofluorocarbons in inducing arterial hypertension and coronary artery diseases is unclear, although significantly elevated serum cholesterol and urinary β2-microglobulin levels raise a concern.</p
    corecore