128 research outputs found

    Comparison of mannitol and methacholine to predict exercise-induced bronchoconstriction and a clinical diagnosis of asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma can be difficult to diagnose, but bronchial provocation with methacholine, exercise or mannitol is helpful when used to identify bronchial hyperresponsiveness (BHR), a key feature of the disease. The utility of these tests in subjects with signs and symptoms of asthma but without a clear diagnosis has not been investigated. We investigated the sensitivity and specificity of mannitol to identify exercise-induced bronchoconstriction (EIB) as a manifestation of BHR; compared this with methacholine; and compared the sensitivity and specificity of mannitol and methacholine for a clinician diagnosis of asthma.</p> <p>Methods</p> <p>509 people (6–50 yr) were enrolled, 78% were atopic, median FEV<sub>1 </sub>92.5% predicted, and a low NAEPPII asthma score of 1.2. Subjects with symptoms of seasonal allergy were excluded. BHR to exercise was defined as a ≥ 10% fall in FEV<sub>1 </sub>on at least one of two tests, to methacholine a PC<sub>20 </sub>≤ 16 mg/ml and to mannitol a 15% fall in FEV<sub>1 </sub>at ≤ 635 mg or a 10% fall between doses. The clinician diagnosis of asthma was made on examination, history, skin tests, questionnaire and response to exercise but they were blind to the mannitol and methacholine results.</p> <p>Results</p> <p>Mannitol and methacholine were therapeutically equivalent to identify EIB, a clinician diagnosis of asthma, and prevalence of BHR. The sensitivity/specificity of mannitol to identify EIB was 59%/65% and for methacholine it was 56%/69%. The BHR was mild. Mean EIB % fall in FEV<sub>1 </sub>in subjects positive to exercise was 19%, (SD 9.2), mannitol PD<sub>15 </sub>158 (CI:129,193) mg, and methacholine PC<sub>20 </sub>2.1(CI:1.7, 2.6)mg/ml. The prevalence of BHR was the same: for exercise (43.5%), mannitol (44.8%), and methacholine (41.6%) with a test agreement between 62 & 69%. The sensitivity and specificity for a clinician diagnosis of asthma was 56%/73% for mannitol and 51%/75% for methacholine. The sensitivity increased to 73% and 72% for mannitol and methacholine when two exercise tests were positive.</p> <p>Conclusion</p> <p>In this group with normal FEV<sub>1</sub>, mild symptoms, and mild BHR, the sensitivity and specificity for both mannitol and methacholine to identify EIB and a clinician diagnosis of asthma were equivalent, but lower than previously documented in well-defined populations.</p> <p>Trial registration</p> <p>This was a multi-center trial comprising 25 sites across the United States of America. (NCT0025229).</p

    Abdominal obesity and low physical activity are associated with insulin resistance in overweight adolescents: a cross-sectional study

    Get PDF
    ABSTRACT: Background: Previous studies have assessed the metabolic changes and lifestyles associated with overweight adolescents. However, these associations are unclear amongst overweight adolescents who have already developed insulin resistance. This study assessed the associations between insulin resistance and anthropometric, metabolic, inflammatory, food consumption, and physical activity variables amongst overweight adolescents. Methods: This cross-sectional study divided adolescents (n = 120) between 10 and 18 years old into 3 groups: an overweight group with insulin resistance (O + IR), an overweight group without insulin resistance (O-IR), and a normal-weight control group (NW). Adolescents were matched across groups based on age, sex, pubertal maturation, and socioeconomic strata. Anthropometric, biochemical, physical activity, and food consumption variables were assessed. Insulin resistance was assessed using homeostatic model assessment (HOMA Calculator Version 2.2.2 from ©Diabetes Trials Unit, University of Oxford), and overweight status was assessed using body mass index according to World Health Organization (2007) references. A chi-square test was used to compare categorical variables. ANOVAs or Kruskal-Wallis tests were used for continuous variables. Multiple linear regression models were used to calculate the probability of the occurrence of insulin resistance based on the independent variables. Results: The risk of insulin resistance amongst overweight adolescents increases significantly when they reach a waist circumference > p95 (OR = 1.9, CIs = 1.3-2.7, p = 0.013) and watch 3 or more hours/day of television (OR = 1.7, CIs = 0.98-2.8, p = 0.033). Overweight status and insulin resistance were associated with higher levels of inflammation (hsCRP ≥1 mg/L) and cardiovascular risk according to arterial indices. With each cm increase in waist circumference, the HOMA index increased by 0.082; with each metabolic equivalent (MET) unit increase in physical activity, the HOMA index decreased by 0.026. Conclusions: Sedentary behaviour and a waist circumference > p90 amongst overweight adolescents were associated with insulin resistance, lipid profile alterations, and higher inflammatory states. A screening that includes body mass index, in waist circumference, and physical activity evaluations of adolescents might enable the early detection of these alterations
    • …
    corecore