9 research outputs found

    Randomized trials of artemisinin-piperaquine, dihydroartemisinin-piperaquine phosphate and artemether-lumefantrine for the treatment of multi-drug resistant falciparum malaria in Cambodia-Thailand border area

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug resistance of falciparum malaria is a global problem. Sulphadoxine/pyrimethamine-resistant and mefloquine-resistant strains of falciparum malaria have spread in Southeast Asia at lightning speed in 1980s-1990s, and the Cambodia-Thailand border is one of the malaria epidemic areas with the most severe forms of multi-drug resistant falciparum malaria.</p> <p>Methods</p> <p>Artemisinin-piperaquine (AP), dihydroartemisinin-piperaquine phosphate (DHP) and artemether-lumefantrine (AL) were used to treat 110, 55 and 55 uncomplicated malaria patients, respectively. The total dosage for adults is 1,750 mg (four tablets, twice over 24 hours) of AP, 2,880 mg (eight tablets, four times over two days) of DHP, and 3,360 mg (24 tablets, six times over three days) of AL. The 28-day cure rate, parasite clearance time, fever clearance time, and drug tolerance of patients to the three drugs were compared. All of the above methods were consistent with the current national guidelines.</p> <p>Results</p> <p>The mean parasite clearance time was similar in all three groups (66.7 ± 21.9 hrs, 65.6 ± 27.3 hrs, 65.3 ± 22.5 hrs in AP, DHP and AL groups, respectively), and there was no remarkable difference between them; the fever clearance time was also similar (31.6 ± 17.7 hrs, 34.6 ± 21.8 hrs and 36.9 ± 15.4 hrs, respectively). After following up for 28-days, the cure rate was 95.1%(97/102), 98.2%(54/55) and 82.4%(42/51); and the recrudescence cases was 4.9%(5/102), 1.8%(1/55) and 17.6%(9/51), respectively. Therefore, the statistical data showed that 28-day cure rate in AP and DHP groups was superior to AL group obviously.</p> <p>The patients had good tolerance to all the three drugs, and some side effects (anoxia, nausea, vomiting, headache and dizziness) could be found in every group and they were self-limited; patients in control groups also had good tolerance to DHP and AL, there was no remarkable difference in the three groups.</p> <p>Conclusions</p> <p>AP, DHP and AL all remained efficacious treatments for the treatment of falciparum malaria in Cambodia-Thailand border area. However, in this particular setting, the AP regimen turned out to be favourable in terms of efficacy and effectiveness, simplicity of administration, cost and compliance.</p> <p>Trial Registration</p> <p>The trial was registered at <it>Chinese Clinical Trial Register </it>under identifier 2005L01041.</p

    Impact of Antimalarial Treatment and Chemoprevention on the Drug Sensitivity of Malaria Parasites Isolated from Ugandan Children

    No full text
    Changing treatment practices may be selecting for changes in the drug sensitivity of malaria parasites. We characterized ex vivo drug sensitivity and parasite polymorphisms associated with sensitivity in 459 Plasmodium falciparum samples obtained from subjects enrolled in two clinical trials in Tororo, Uganda, from 2010 to 2013. Sensitivities to chloroquine and monodesethylamodiaquine varied widely; sensitivities to quinine, dihydroartemisinin, lumefantrine, and piperaquine were generally good. Associations between ex vivo drug sensitivity and parasite polymorphisms included decreased chloroquine and monodesethylamodiaquine sensitivity and increased lumefantrine and piperaquine sensitivity with pfcrt 76T, as well as increased lumefantrine sensitivity with pfmdr1 86Y, Y184, and 1246Y. Over time, ex vivo sensitivity decreased for lumefantrine and piperaquine and increased for chloroquine, the prevalences of pfcrt K76 and pfmdr1 N86 and D1246 increased, and the prevalences of pfdhfr and pfdhps polymorphisms associated with antifolate resistance were unchanged. In recurrent infections, recent prior treatment with artemether-lumefantrine was associated with decreased ex vivo lumefantrine sensitivity and increased prevalence of pfcrt K76 and pfmdr1 N86, 184F, and D1246. In children assigned chemoprevention with monthly dihydroartemisinin-piperaquine with documented circulating piperaquine, breakthrough infections had increased the prevalence of pfmdr1 86Y and 1246Y compared to untreated controls. The noted impacts of therapy and chemoprevention on parasite polymorphisms remained significant in multivariate analysis correcting for calendar time. Overall, changes in parasite sensitivity were consistent with altered selective pressures due to changing treatment practices in Uganda. These changes may threaten the antimalarial treatment and preventive efficacies of artemether-lumefantrine and dihydroartemisinin-piperaquine, respectively
    corecore