466 research outputs found

    Is Adding the E Enough?: Investigating the Impact of K-12 Engineering Standards on the Implementation of STEM Integration.

    Get PDF
    The problems that we face in our ever-changing, increasingly global society are multidisciplinary, and many require the integration of multiple science, technology, engineering, and mathematics (STEM) concepts to solve them. National calls for improvement of STEM education in the United States are driving changes in policy, particularly in academic standards. Research on STEM integration in K-12 classrooms has not kept pace with the sweeping policy changes in STEM education. This study addresses the need for research to explore the translation of broad, national-level policy statements regarding STEM education and integration to state-level policies and implementation in K-12 classrooms. An interpretive multicase study design was employed to conduct an in-depth investigation of secondary STEM teachers\u27 implementation of STEM integration in their classrooms during a yearlong professional development program. The interpretive approach was used because it provides holistic descriptions and explanations for the particular phenomenon, in this case STEM integration. The results of this study demonstrate the possibilities of policies that use state standards documents as a mechanism to integrate engineering into science standards. Our cases suggest that STEM integration can be implemented most successfully when mathematics and science teachers work together both in a single classroom (co-teaching) and in multiple classrooms (content teachingā€”common theme)

    The African Open Science Platform: The Future of Science and Science for the Future

    Get PDF
    This document presents a draft strategy and makes the scientific case for the African Open Science Platform (AOSP). It is based on an expert group meeting held in Pretoria on 27-28 March 2018. Its purpose is to act as a framework for detailed, work on the creation of the Platform and as a basis for discussion at a stakeholder meeting to be held on 3-4 September 2018, which will lead to a definitive strategy for implementation from 2019. Expert group members at the March meeting were drawn from the following organisations: African Academy of Sciences (AAS), Academy of Science of South Africa (ASSAf), Committee on Data for Science and Technology (CODATA), International Council for Science (ICSU), National Research and Education Networks (NRENS), Research Data Alliance (RDA), South African Department of Science & Technology (DST) and National Research Foundation (NRF), Square Kilometre Array (SKA), UNESCO. The African Open Science Platform The Future of Science and Science for the Future 4 The African Open Science Platform. The Platformā€™s mission is to put African scientists at the cutting edge of contemporary, data-intensive science as a fundamental resource for a modern society. Its building blocks are: ā€¢ a federated hardware, communications and software infrastructure, including policies and enabling practices, to support Open Science in the digital era; ā€¢ a network of excellence in Open Science that supports scientists & other societal actors in accumulating and using modern data resources to maximise scientific, social and economic benefit. These objectives will be realised through seven related strands of activity: Strand 0: Register & portal for African & related international data collections & services. Strand 1: A federated network of computational facilities and services. Strand 2: Software tools & advice on policies & practices of research data management. Strand 3: A Data Science Institute at the cutting edge of data analytics and AI. Strand 4: Priority application programmes: e.g. cities, disease, biosphere, agriculture. Strand 5: A Network for Education & Skills in data & information. Strand 6: A Network for Open Science Access and Dialogue. The document also outlines the proposed governance, membership and management structure of the Platform, the approach to initial funding and the milestones in building up to the launch. The case for Open Science is based on the profound implications for society and for science, of the digital revolution and of the storm of data that it has unleashed and of the pervasive and novel means of communication that it has enabled. No state should fail to recognise this potential or to adapt their national intellectual infrastructure in exploiting benefits and minimising risks. Open Science is a vital enabler in maintaining the rigour and reliability of science; in creatively integrating diverse data resources to address complex modern challenges; in open innovation and in engaging with other societal actors as knowledge partners in tackling shared problems. It is fundamental to realisation of the Sustainable Development Goals. National science systems worldwide are struggling to adapt to this new paradigm. The alternatives are to do so or risk stagnating in a scientific backwater, isolated from creative streams of social, cultural and economic opportunity. Africa should adapt and capitalise on the opportunities, but in its own way, and as a leader not a follower, with broader, more societally-engaged priorities. It should seize the challenge with boldness and resolution

    The African Open Science Platform: The Future of Science and Science for the Future

    Get PDF
    This document presents a draft strategy and makes the scientific case for the African Open Science Platform (AOSP). It is based on an expert group meeting held in Pretoria on 27-28 March 2018. Its purpose is to act as a framework for detailed, work on the creation of the Platform and as a basis for discussion at a stakeholder meeting to be held on 3-4 September 2018, which will lead to a definitive strategy for implementation from 2019. Expert group members at the March meeting were drawn from the following organisations: African Academy of Sciences (AAS), Academy of Science of South Africa (ASSAf), Committee on Data for Science and Technology (CODATA), International Council for Science (ICSU), National Research and Education Networks (NRENS), Research Data Alliance (RDA), South African Department of Science & Technology (DST) and National Research Foundation (NRF), Square Kilometre Array (SKA), UNESCO. The African Open Science Platform The Future of Science and Science for the Future 4 The African Open Science Platform. The Platformā€™s mission is to put African scientists at the cutting edge of contemporary, data-intensive science as a fundamental resource for a modern society. Its building blocks are: ā€¢ a federated hardware, communications and software infrastructure, including policies and enabling practices, to support Open Science in the digital era; ā€¢ a network of excellence in Open Science that supports scientists & other societal actors in accumulating and using modern data resources to maximise scientific, social and economic benefit. These objectives will be realised through seven related strands of activity: Strand 0: Register & portal for African & related international data collections & services. Strand 1: A federated network of computational facilities and services. Strand 2: Software tools & advice on policies & practices of research data management. Strand 3: A Data Science Institute at the cutting edge of data analytics and AI. Strand 4: Priority application programmes: e.g. cities, disease, biosphere, agriculture. Strand 5: A Network for Education & Skills in data & information. Strand 6: A Network for Open Science Access and Dialogue. The document also outlines the proposed governance, membership and management structure of the Platform, the approach to initial funding and the milestones in building up to the launch. The case for Open Science is based on the profound implications for society and for science, of the digital revolution and of the storm of data that it has unleashed and of the pervasive and novel means of communication that it has enabled. No state should fail to recognise this potential or to adapt their national intellectual infrastructure in exploiting benefits and minimising risks. Open Science is a vital enabler in maintaining the rigour and reliability of science; in creatively integrating diverse data resources to address complex modern challenges; in open innovation and in engaging with other societal actors as knowledge partners in tackling shared problems. It is fundamental to realisation of the Sustainable Development Goals. National science systems worldwide are struggling to adapt to this new paradigm. The alternatives are to do so or risk stagnating in a scientific backwater, isolated from creative streams of social, cultural and economic opportunity. Africa should adapt and capitalise on the opportunities, but in its own way, and as a leader not a follower, with broader, more societally-engaged priorities. It should seize the challenge with boldness and resolution

    The African Open Science Platform: The Future of Science and Science for the Future

    Get PDF
    This document presents a draft strategy and makes the scientific case for the African Open Science Platform (AOSP). It is based on an expert group meeting held in Pretoria on 27-28 March 2018. Its purpose is to act as a framework for detailed, work on the creation of the Platform and as a basis for discussion at a stakeholder meeting to be held on 3-4 September 2018, which will lead to a definitive strategy for implementation from 2019. Expert group members at the March meeting were drawn from the following organisations: African Academy of Sciences (AAS), Academy of Science of South Africa (ASSAf), Committee on Data for Science and Technology (CODATA), International Council for Science (ICSU), National Research and Education Networks (NRENS), Research Data Alliance (RDA), South African Department of Science & Technology (DST) and National Research Foundation (NRF), Square Kilometre Array (SKA), UNESCO. The African Open Science Platform The Future of Science and Science for the Future 4 The African Open Science Platform. The Platformā€™s mission is to put African scientists at the cutting edge of contemporary, data-intensive science as a fundamental resource for a modern society. Its building blocks are: ā€¢ a federated hardware, communications and software infrastructure, including policies and enabling practices, to support Open Science in the digital era; ā€¢ a network of excellence in Open Science that supports scientists & other societal actors in accumulating and using modern data resources to maximise scientific, social and economic benefit. These objectives will be realised through seven related strands of activity: Strand 0: Register & portal for African & related international data collections & services. Strand 1: A federated network of computational facilities and services. Strand 2: Software tools & advice on policies & practices of research data management. Strand 3: A Data Science Institute at the cutting edge of data analytics and AI. Strand 4: Priority application programmes: e.g. cities, disease, biosphere, agriculture. Strand 5: A Network for Education & Skills in data & information. Strand 6: A Network for Open Science Access and Dialogue. The document also outlines the proposed governance, membership and management structure of the Platform, the approach to initial funding and the milestones in building up to the launch. The case for Open Science is based on the profound implications for society and for science, of the digital revolution and of the storm of data that it has unleashed and of the pervasive and novel means of communication that it has enabled. No state should fail to recognise this potential or to adapt their national intellectual infrastructure in exploiting benefits and minimising risks. Open Science is a vital enabler in maintaining the rigour and reliability of science; in creatively integrating diverse data resources to address complex modern challenges; in open innovation and in engaging with other societal actors as knowledge partners in tackling shared problems. It is fundamental to realisation of the Sustainable Development Goals. National science systems worldwide are struggling to adapt to this new paradigm. The alternatives are to do so or risk stagnating in a scientific backwater, isolated from creative streams of social, cultural and economic opportunity. Africa should adapt and capitalise on the opportunities, but in its own way, and as a leader not a follower, with broader, more societally-engaged priorities. It should seize the challenge with boldness and resolution

    Creating an Instrument to Measure Student Response to Instructional Practices

    Full text link
    BackgroundCalls for the reform of education in science, technology, engineering, and mathematics (STEM) have inspired many instructional innovations, some research based. Yet adoption of such instruction has been slow. Research has suggested that studentsā€™ response may significantly affect an instructorā€™s willingness to adopt different types of instruction.PurposeWe created the Student Response to Instructional Practices (StRIP) instrument to measure the effects of several variables on student response to instructional practices. We discuss the stepā€byā€step process for creating this instrument.Design/MethodThe development process had six steps: item generation and construct development, validity testing, implementation, exploratory factor analysis, confirmatory factor analysis, and instrument modification and replication. We discuss pilot testing of the initial instrument, construct development, and validation using exploratory and confirmatory factor analyses.ResultsThis process produced 47 items measuring three parts of our framework. Types of instruction separated into four factors (interactive, constructive, active, and passive); strategies for using inā€class activities into two factors (explanation and facilitation); and student responses to instruction into five factors (value, positivity, participation, distraction, and evaluation).ConclusionsWe describe the design process and final results for our instrument, a useful tool for understanding the relationship between type of instruction and studentsā€™ response.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136692/1/jee20162_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136692/2/jee20162.pd

    A Comparative Analysis of Competency Frameworks for Youth Workers in the Out-of-School Time Field

    Get PDF
    Research suggests that the quality of out-of-school time (OST) programs is related to positive youth outcomes and skilled staff are a critical component of high quality programming. This descriptive case study of competency frameworks for youth workers in the OST field demonstrates how experts and practitioners characterize a skilled youth worker. A comparative analysis of 11 competency frameworks is conducted to identify a set of common core competencies. A set of 12 competency areas that are shared by existing frameworks used in the OST field are identified. The age of youth being served, descriptions of mastery for each competency area, an emphasis on developing mid-level managers, and incorporating research emerge as factors that should be addressed in future competency frameworks

    Are chiropractors in the uk primary healthcare or primary contact practitioners?: a mixed methods study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the debates regarding the role of chiropractors is whether or not they should be considered as primary healthcare practitioners. Primary care is often used to describe chiropractic but without any definition of what is meant by the term. Primary healthcare itself has many definitions and this adds to the problem. Existing research literature, based mostly in the USA, suggests that the use of the title "primary healthcare professional" by chiropractors is central to the identity of the profession. It has also been suggested that the concept of primary care is misused by chiropractors because they have not examined the concept in detail and thus do not understand it. For the sake of quality of patient care and for the legitimacy of the profession, chiropractors in the UK need to agree on their healthcare role. This study aimed to examine the opinions of chiropractors towards the use of the term primary healthcare when applied to chiropractic practice within the UK.</p> <p>Methods</p> <p>A sequential study of exploratory design was used; this model is characterised by an initial phase of qualitative data collection and analysis that precedes and informs the quantitative phase of data collection and analysis. In this study, interviews with members of chiropractic teaching faculty were used to inform the development of a questionnaire used to survey the opinions of chiropractors in the UK.</p> <p>Results</p> <p>There was a general consensus of opinion that chiropractors are primary contact practitioners, who work in a primary healthcare setting and that to be able to fulfil this healthcare role, chiropractors must be able to diagnose patients and refer when required. Participants did not feel that chiropractors are able to treat all of the most common medical conditions that present in a primary healthcare setting.</p> <p>Conclusions</p> <p>The findings of this study suggest that chiropractors in the UK view their role as one of a primary contact healthcare practitioner and that this view is held irrespective of the country in which they were educated or the length of time in practice.</p> <p>Further research needs to be developed to evaluate the findings of the current study within a wider healthcare context. In particular the opinions of other healthcare professionals towards the role of chiropractors in healthcare, need to be examined in more detail.</p

    Review of school vision screening guidelines

    Get PDF
    Abstract: Background: Vision screenings are important in identifying visual anomalies likely to disrupt the physical, intellectual, social and emotional development of children. School health services globally include vision screenings, complementing a variety of associated screening services. Aim: This review article provides evidence for content, provision and efficacy of the vision screening services for children of school-going age and reports on the current practice of childrenā€™s vision screenings worldwide including in South Africa. Methods: Studies were identified from PubMed, Ebscohost and Science Direct with the search terms utilised during the selection of electronic articles and journals for the review. The target population includes children of school-going age from 6 to 19 years without previously known conditions associated with visual anomalies and learning-related problems. The quality of vision screening programmes and policies for the school-going age children in different countries were evaluated using Wilson and Jungner criteria.1 Results: Vision screening programmes worldwide appear to support comprehensive vision screening methods among pre-schoolers (from birth to ā‰¤ 6 years vs. children of school-going age). The development of vision screening procedures in some countries in the United States of America (USA) was found to be grounded on epidemiologic findings and principles. These may have contributed towards the formulation of national vision screening guidelines for preschoolers that supported the detection of amblyopia and its associated conditions such as strabismus, anisometropia and myopia. School-going childrenā€™s vision screenings are not supported worldwide as research has shown that there is lack of benefits for detecting other visual anomalies such as vergence and accommodative dysfunctions. This is despite evidence provided by the literature reviewed that an association exists between prevalent accommodation and vergence dysfunctions including poor ocular motilities and poor near-vision, among children of school-going age with poor academic performance. Conclusion: The guidelines worldwide support school vision screenings, especially for the pre-schoolers by the school health nurses, with other programs having considered the teachers, optometrists or orthoptists as the appropriate personnel to conduct the school vision screenings. There is still a need for the effectiveness of the school vision-screening programmes to be investigated related to the importance of detecting convergence and accommodative dysfunctions for the school going age children
    • ā€¦
    corecore