176 research outputs found

    Building a successful minimally invasive mitral valve repair program before introducing the robotic approach: The Massachusetts General Hospital experience

    Get PDF
    BackgroundPatients with mitral valve prolapse (MVP) requiring surgical repair (MVr) are increasingly operated using minimally invasive strategies. Skill acquisition may be facilitated by a dedicated MVr program. We present here our institutional experience in establishing minimally invasive MVr (starting in 2014), laying the foundation to introduce robotic MVr.MethodsWe reviewed all patients that had undergone MVr for MVP via sternotomy or mini-thoracotomy between January 2013 and December 2020 at our institution. In addition, all cases of robotic MVr between January 2021 and August 2022 were analyzed. Case complexity, repair techniques, and outcomes are presented for the conventional sternotomy, right mini-thoracotomy and robotic approaches. A subgroup analysis comparing only isolated MVr cases via sternotomy vs. right mini-thoracotomy was conducted using propensity score matching.ResultsBetween 2013 and 2020, 799 patients were operated for native MVP at our institution, of which 761 (95.2%) received planned MVr (263 [34.6%] via mini-thoracotomy) and 38 (4.8%) received planned MV replacement. With increasing proportions of minimally invasive procedures (2014: 14.8%, 2020: 46.5%), we observed a continuous growth in overall institutional volume of MVP (nā€‰=ā€‰69 in 2013; nā€‰=ā€‰127 in 2020) and markedly improved institutional rates of successful MVr, with 95.4% in 2013 vs. 99.2% in 2020. Over this period, a higher complexity of cases were treated minimally-invasively and increased use of neochord implantationā€‰Ā±ā€‰limited leaflet resection was observed. Patients operated minimally invasively had longer aortic cross-clamp times (94 vs. 88ā€…min, pā€‰=ā€‰0.001) but shorter ventilation times (4.4 vs. 4.8ā€…h, pā€‰=ā€‰0.002) and hospital stays (5 vs. 6 days, pā€‰<ā€‰0.001) than those operated via sternotomy, with no significant differences in other outcome variables. A total of 16 patients underwent robotically assisted MVr with successful repair in all cases.ConclusionA focused approach towards minimally invasive MVr has transformed the overall MVr strategy (incision; repair techniques) at our institution, leading to a growth in MVr volume and improved repair rates without significant complications. On this foundation, robotic MVr was first introduced at our institution in 2021 with excellent outcomes. This emphasizes the importance of building a competent team to perform these challenging operations, especially during the initial learning curve

    phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta.

    Get PDF
    The combination of algorithms from the structure-modeling field with those of crystallographic structure determination can broaden the range of templates that are useful for structure determination by the method of molecular replacement. Automated tools in phenix.mr_rosetta simplify the application of these combined approaches by integrating Phenix crystallographic algorithms and Rosetta structure-modeling algorithms and by systematically generating and evaluating models with a combination of these methods. The phenix.mr_rosetta algorithms can be used to automatically determine challenging structures. The approaches used in phenix.mr_rosetta are described along with examples that show roles that structure-modeling can play in molecular replacement

    montalcino, A zebrafish model for variegate porphyria

    Full text link
    OBJECTIVE Inherited or acquired mutations in the heme biosynthetic pathway leads to a debilitating class of diseases collectively known as porphyrias, with symptoms that can include anemia, cutaneous photosensitivity, and neurovisceral dysfunction. In a genetic screen for hematopoietic mutants, we isolated a zebrafish mutant, montalcino (mno), which displays hypochromic anemia and porphyria. The objective of this study was to identify the defective gene and characterize the phenotype of the zebrafish mutant. MATERIALS AND METHODS Genetic linkage analysis was utilized to identify the region harboring the mno mutation. Candidate gene analysis together with reverse transcriptase polymerase chain reaction was utilized to identify the genetic mutation, which was confirmed via allele-specific oligo hybridizations. Whole mount in situ hybridizations and o-dianisidine staining were used to characterize the phenotype of the mno mutant. mRNA and morpholino microinjections were performed to phenocopy and/or rescue the mutant phenotype. RESULTS Homozygous mno mutant embryos have a defect in the protoporphyrinogen oxidase (ppox) gene, which encodes the enzyme that catalyzes the oxidation of protoporphyrinogen. Homozygous mutant embryos are deficient in hemoglobin, and by 36 hours post-fertilization are visibly anemic and porphyric. The hypochromic anemia of mno embryos was partially rescued by human ppox, providing evidence for the conservation of function between human and zebrafish ppox. CONCLUSION In humans, mutations in ppox result in variegate porphyria. At present, effective treatment for acute attacks requires the administration intravenous hemin and/or glucose. Thus, mno represents a powerful model for investigation, and a tool for future screens aimed at identifying chemical modifiers of variegate porphyria

    Identification of ZBP-89 as a Novel GATA-1-Associated Transcription Factor Involved in Megakaryocytic and Erythroid Developmentā–æ ā€ 

    No full text
    A complete understanding of the transcriptional regulation of developmental lineages requires that all relevant factors be identified. Here, we have taken a proteomic approach to identify novel proteins associated with GATA-1, a lineage-restricted zinc finger transcription factor required for terminal erythroid and megakaryocytic maturation. We identify the KrĆ¼ppel-type zinc finger transcription factor ZBP-89 as being a component of multiprotein complexes involving GATA-1 and its essential cofactor Friend of GATA-1 (FOG-1). Using chromatin immunoprecipitation assays, we show that GATA-1 and ZBP-89 cooccupy cis-regulatory elements of certain erythroid and megakaryocyte-specific genes, including an enhancer of the GATA-1 gene itself. Loss-of-function studies in zebrafish and mice demonstrate an in vivo requirement for ZBP-89 in megakaryopoiesis and definitive erythropoiesis but not primitive erythropoiesis, phenocopying aspects of FOG-1- and GATA-1-deficient animals. These findings identify ZBP-89 as being a novel transcription factor involved in erythroid and megakaryocytic development and suggest that it serves a cooperative function with GATA-1 and/or FOG-1 in a developmental stage-specific manner

    Detailed models of interacting short-period massive binary stars

    No full text
    Context. The majority of massive stars are part of binary systems. In about a quarter of these, the companions are so close that mass transfer occurs while they undergo core hydrogen burning, first on the thermal and then on the nuclear timescale. The nuclear timescale mass transfer leads to observational counterparts: the semi-detached so-called massive Algol binaries. These systems may provide urgently needed tests of the physics of mass transfer. However, comprehensive model predictions for these systems are sparse. Aims. We use a large grid of detailed evolutionary models of short-period massive binaries and follow-up population synthesis calculations to derive probability distributions of the observable properties of massive Algols and their descendants. Methods. Our results are based on āˆ¼10 000 binary model sequences calculated with the stellar evolution code MESA, using a metallicity suitable for the Large Magellanic Cloud (LMC), covering initial donor masses between 10 MāŠ™ ā  and 40 MāŠ™ ā  and initial orbital periods above 1.4 d. These models include internal differential rotation and magnetic angular momentum transport, non-conservative mass and angular momentum transfer between the binary components, and time-dependent tidal coupling. Results. Our models imply āˆ¼30, or āˆ¼3% of the āˆ¼1000, core hydrogen burning O-star binaries in the LMC to be currently in the semi-detached phase. Our donor models are up to 25 times more luminous than single stars of an identical mass and effective temperature, which agrees with the observed Algols. A comparison of our models with the observed orbital periods and mass ratios implies rather conservative mass transfer in some systems, while a very inefficient one in others. This is generally well reproduced by our spin-dependent mass transfer algorithm, except for the lowest considered masses. The observations reflect the slow increase of the surface nitrogen enrichment of the donors during the semi-detached phase all the way to CNO equilibrium. We also investigate the properties of our models after core hydrogen depletion of the donor star, when these models correspond to Wolf-Rayet or helium+OB star binaries. Conclusions. A dedicated spectroscopic survey of massive Algol systems may allow to derive the dependence of the efficiency of thermal timescale mass transfer on the binary parameters, as well as the efficiency of semiconvective mixing in the stellar interior. This would be a crucial step towards reliable binary models up to the formation of supernovae and compact objects
    • ā€¦
    corecore