341 research outputs found

    Nonlinear model order reduction via Dynamic Mode Decomposition

    Get PDF
    We propose a new technique for obtaining reduced order models for nonlinear dynamical systems. Specifically, we advocate the use of the recently developed Dynamic Mode Decomposition (DMD), an equation-free method, to approximate the nonlinear term. DMD is a spatio-temporal matrix decomposition of a data matrix that correlates spatial features while simultaneously associating the activity with periodic temporal behavior. With this decomposition, one can obtain a fully reduced dimensional surrogate model and avoid the evaluation of the nonlinear term in the online stage. This allows for an impressive speed up of the computational cost, and, at the same time, accurate approximations of the problem. We present a suite of numerical tests to illustrate our approach and to show the effectiveness of the method in comparison to existing approaches

    Selecting a Small Set of Optimal Gestures from an Extensive Lexicon

    Full text link
    Finding the best set of gestures to use for a given computer recognition problem is an essential part of optimizing the recognition performance while being mindful to those who may articulate the gestures. An objective function, called the ellipsoidal distance ratio metric (EDRM), for determining the best gestures from a larger lexicon library is presented, along with a numerical method for incorporating subjective preferences. In particular, we demonstrate an efficient algorithm that chooses the best nn gestures from a lexicon of mm gestures where typically n≪mn \ll m using a weighting of both subjective and objective measures.Comment: 27 pages, 7 figure

    A reaction-diffusion model of cholinergic retinal waves

    Full text link
    Prior to receiving visual stimuli, spontaneous, correlated activity called retinal waves drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their extended inter-wave intervals and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In contrast with previous, simulation-based models, we are able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how the noise rate and sAHP refractory period contributes to critical wave size variability.Comment: 38 pages, 10 figure
    • …
    corecore