1,239 research outputs found
Exploring quantum criticality based on ultracold atoms in optical lattices
Critical behavior developed near a quantum phase transition, interesting in
its own right, offers exciting opportunities to explore the universality of
strongly-correlated systems near the ground state. Cold atoms in optical
lattices, in particular, represent a paradigmatic system, for which the quantum
phase transition between the superfluid and Mott insulator states can be
externally induced by tuning the microscopic parameters. In this paper, we
describe our approach to study quantum criticality of cesium atoms in a
two-dimensional lattice based on in situ density measurements. Our research
agenda involves testing critical scaling of thermodynamic observables and
extracting transport properties in the quantum critical regime. We present and
discuss experimental progress on both fronts. In particular, the thermodynamic
measurement suggests that the equation of state near the critical point follows
the predicted scaling law at low temperatures.Comment: 15 pages, 6 figure
Accurate Enthalpies of Formation of Alkali and Alkaline Earth Metal Oxides and Hydroxides: Assessment of the Correlation Consistent Composite Approach (ccCA)
Computing the enthalpies of formation for alkali metal and alkaline earth metal oxides (MxO) and hydroxides [M(OH)n] using the Gaussian-n (Gn) and Weismann-n (Wn) ab initio model chemistries is difficult due to an improper treatment of core-valence electron correlation effects. Using a new model chemistry called the correlation consistent Composite Approach (ccCA), enthalpies of formation were determined for eight different alkali/alkaline earth metal oxides and hydroxides. Unlike the Gn and Wn model chemistries, which must be modified to properly account for core-valence electron correlation, the standard implementations of the ccCA provide acceptable results, and all enthalpies of formation obtained with the ccCA are within the accepted range of recommended values
Enterohemorrhagic Escherichia coli O157∶H7 Gene Expression Profiling in Response to Growth in the Presence of Host Epithelia
BACKGROUND: The pathogenesis of enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection is attributed to virulence factors encoded on multiple pathogenicity islands. Previous studies have shown that EHEC O157:H7 modulates host cell signal transduction cascades, independent of toxins and rearrangement of the cytoskeleton. However, the virulence factors and mechanisms responsible for EHEC-mediated subversion of signal transduction remain to be determined. Therefore, the purpose of this study was to first identify differentially regulated genes in response to EHEC O157:H7 grown in the presence of epithelial cells, compared to growth in the absence of epithelial cells (that is, growth in minimal essential tissue culture medium alone, minimal essential tissue culture medium in the presence of 5% CO(2), and Penassay broth alone) and, second, to identify EHEC virulence factors responsible for pathogen modulation of host cell signal transduction. METHODOLOGY/PRINCIPAL FINDINGS: Overnight cultures of EHEC O157:H7 were incubated for 6 hr at 37 degrees C in the presence or absence of confluent epithelial (HEp-2) cells. Total RNA was then extracted and used for microarray analyses (Affymetrix E. coli Genome 2.0 gene chips). Relative to bacteria grown in each of the other conditions, EHEC O157:H7 cultured in the presence of cultured epithelial cells displayed a distinct gene-expression profile. A 2.0-fold increase in the expression of 71 genes and a 2.0-fold decrease in expression of 60 other genes were identified in EHEC O157:H7 grown in the presence of epithelial cells, compared to bacteria grown in media alone. CONCLUSION/SIGNIFICANCE: Microarray analyses and gene deletion identified a protease on O-island 50, gene Z1787, as a potential virulence factor responsible for mediating EHEC inhibition of the interferon (IFN)-gamma-Jak1,2-STAT-1 signal transduction cascade. Up-regulated genes provide novel targets for use in developing strategies to interrupt the infectious process
Postprandial Glucose Improves the Risk Prediction of Cardiovascular Death Beyond the Metabolic Syndrome in the Nondiabetic Population
OBJECTIVE - With increasing evidence about the cardiovascular risk associated with postprandial nonfasting glucose and lipid dysmetabolism, it remains uncertain whether the postprandial glucose concentration increases the ability of metabolic syndrome to predict cardiovascular events. RESEARCH DESIGN AND METHODS - This was an observational study of 15, 145 individuals aged 35-75 years without diabetes or cardiovascular diseases. Postprandial glucose was obtained 2 In after a lunch meal. Metabolic syndrome was diagnosed using the criteria Of the U.S. National Cholesterol Education Program Adult Treatment Panel III. Cardiovascular and all-cause deaths were primary outcomes. RESULTS - During a median follow-up of 6.7 years, 410 individuals died, including 82 deaths from cardiovascular causes. In a Cox model adjusting for metabolic syndrome status as well as age, sex, smoking, systolic blood pressure, LDL, and HDL cholesterol levels, elevated 2-h postprandial glucose increased the risk of cardiovascular and all-cause death (per millimole per liter increase, hazard ratio 1.26 [95% CI 1.11-1.42] and 1.10 [1. 04-1.16], respectively), with significant trends across the postprandial glucose quintiles. Including 2-h postprandial glucose into a metabolic syndrome-included mustivariate risk prediction model conferred a discernible improvement of the model in discriminating between those who died of cardiovascular causes and who did not (integrated discrimination improvement 0.4, P = 0. 005; net reclassification improvement 13.4%, P = 0.03); however, the improvement was only marginal for all-cause death. CONCLUSIONS - Given the risk prediction based on metabolic syndrome and established cardiovascular risk factors, 2-h postprandial glucose improves the predictive ability to identity nondiabetic individuals at increased risk of cardiovascular death
Trauma history and depression predict incomplete adherence to antiretroviral therapies in a low income country.
As antiretroviral therapy (ART) for HIV becomes increasingly available in low and middle income countries (LMICs), understanding reasons for lack of adherence is critical to stemming the tide of infections and improving health. Understanding the effect of psychosocial experiences and mental health symptomatology on ART adherence can help maximize the benefit of expanded ART programs by indicating types of services, which could be offered in combination with HIV care. The Coping with HIV/AIDS in Tanzania (CHAT) study is a longitudinal cohort study in the Kilimanjaro Region that included randomly selected HIV-infected (HIV+) participants from two local hospital-based HIV clinics and four free-standing voluntary HIV counselling and testing sites. Baseline data were collected in 2008 and 2009; this paper used data from 36 month follow-up interviews (N = 468). Regression analyses were used to predict factors associated with incomplete self-reported adherence to ART. INCOMPLETE ART ADHERENCE WAS SIGNIFICANTLY MORE LIKELY TO BE REPORTED AMONGST PARTICIPANTS WHO EXPERIENCED A GREATER NUMBER OF CHILDHOOD TRAUMATIC EVENTS: sexual abuse prior to puberty and the death in childhood of an immediate family member not from suicide or homicide were significantly more likely in the non-adherent group and other negative childhood events trended toward being more likely. Those with incomplete adherence had higher depressive symptom severity and post-traumatic stress disorder (PTSD). In multivariable analyses, childhood trauma, depression, and financial sacrifice remained associated with incomplete adherence.\ud
This is the first study to examine the effect of childhood trauma, depression and PTSD on HIV medication adherence in a low income country facing a significant burden of HIV. Allocating spending on HIV/AIDS toward integrating mental health services with HIV care is essential to the creation of systems that enhance medication adherence and maximize the potential of expanded antiretroviral access to improve health and reduce new infections
Identifying the biomarker profile of pre-frail and frail people: a cross-sectional analysis from UK Biobank
Objective: This study aimed to compare the biomarker profile of pre-frail and frail adults in the UK Biobank cohort by sex. Methods: In total, 202,537 participants (67.8% women, aged 37 to 73 years) were included in this cross-sectional analysis. Further, 31 biomarkers were investigated in this study. Frailty was defined using a modified version of the Frailty Phenotype. Multiple linear regression analyses were performed to explore the biomarker profile of pre-frail and frail individuals categorized by sex. Results: Lower concentrations of apoA1, total, LDL, and HDL cholesterol, albumin, eGFRcys, vitamin D, total bilirubin, apoB, and testosterone (differences ranged from −0.30 to −0.02 per 1-SD change), as well as higher concentrations of triglycerides, GGT, cystatin C, CRP, ALP, and phosphate (differences ranged from 0.01 to 0.53 per 1-SD change), were identified both in pre-frail and frail men and women. However, some of the associations differed by sex. For instance, higher rheumatoid factor and urate concentrations were identified in pre-frail and frail women, while lower calcium, total protein, and IGF-1 concentrations were identified in pre-frail women and frail women and men. When the analyses were further adjusted for CRP, similar results were found. Conclusions: Several biomarkers were linked to pre-frailty and frailty. Nonetheless, some of the associations differed by sex. Our findings contribute to a broader understanding of the pathophysiology of frailty as currently defined
Discovery of an intermediate-luminosity red transient in M51 and its likely dust-obscured, infrared-variable progenitor
We present the discovery of an optical transient (OT) in Messier 51,
designated M51 OT2019-1 (also ZTF19aadyppr, AT 2019abn, ATLAS19bzl), by the
Zwicky Transient Facility (ZTF). The OT rose over 15 days to an observed
luminosity of (), in the
luminosity gap between novae and typical supernovae (SNe). Spectra during the
outburst show a red continuum, Balmer emission with a velocity width of
km s, Ca II and [Ca II] emission, and absorption features
characteristic of an F-type supergiant. The spectra and multiband light curves
are similar to the so-called "SN impostors" and intermediate-luminosity red
transients (ILRTs). We directly identify the likely progenitor in archival
Spitzer Space Telescope imaging with a m luminosity of
and a color redder than 0.74 mag, similar
to those of the prototype ILRTs SN 2008S and NGC 300 OT2008-1. Intensive
monitoring of M51 with Spitzer further reveals evidence for variability of the
progenitor candidate at [4.5] in the years before the OT. The progenitor is not
detected in pre-outburst Hubble Space Telescope optical and near-IR images. The
optical colors during outburst combined with spectroscopic temperature
constraints imply a higher reddening of mag and higher
intrinsic luminosity of
() near peak than seen in previous ILRT
candidates. Moreover, the extinction estimate is higher on the rise than on the
plateau, suggestive of an extended phase of circumstellar dust destruction.
These results, enabled by the early discovery of M51 OT2019-1 and extensive
pre-outburst archival coverage, offer new clues about the debated origins of
ILRTs and may challenge the hypothesis that they arise from the
electron-capture induced collapse of extreme asymptotic giant branch stars.Comment: 21 pages, 5 figures, published in ApJ
Identifying Mechanisms by Which Escherichia coli O157:H7 Subverts Interferon-γ Mediated Signal Transducer and Activator of Transcription-1 Activation
Enterohemorrhagic Escherichia coli serotype O157:H7 is a food borne enteric bacterial pathogen that causes significant morbidity and mortality in both developing and industrialized nations. E. coli O157:H7 infection of host epithelial cells inhibits the interferon gamma pro-inflammatory signaling pathway, which is important for host defense against microbial pathogens, through the inhibition of Stat-1 tyrosine phosphorylation. The aim of this study was to determine which bacterial factors are involved in the inhibition of Stat-1 tyrosine phosphorylation. Human epithelial cells were challenged with either live bacteria or bacterial-derived culture supernatants, stimulated with interferon-gamma, and epithelial cell protein extracts were then analyzed by immunoblotting. The results show that Stat-1 tyrosine phosphorylation was inhibited by E. coli O157:H7 secreted proteins. Using sequential anion exchange and size exclusion chromatography, YodA was identified, but not confirmed to mediate subversion of the Stat-1 signaling pathway using isogenic mutants. We conclude that E. coli O157:H7 subverts Stat-1 tyrosine phosphorylation in response to interferon-gamma through a still as yet unidentified secreted bacterial protein
Zebrafish SPI-1 marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning.
The mammalian transcription factor SPI-1 (synonyms: SPI1, PU.1, or Sfpi1) plays a critical role in myeloid development. To examine early myeloid commitment in the zebrafish embryo, we isolated a gene from zebrafish that is a SPI-1 orthologue on the basis of homology and phylogenetic considerations. The zebrafish spi1 (pu1) gene was first expressed at 12 h postfertilization in rostral lateral plate mesoderm (LPM), anatomically isolated from erythroid development in caudal lateral plate mesoderm. Fate-mapping traced rostral LPM cells from the region of initial spi1 expression to a myeloid fate. spi1 expression was lost in the bloodless mutant cloche, but rostral spi1 expression and myeloid development were preserved in the mutant spadetail, despite its complete erythropoietic failure. This dissociation of myeloid and erythroid development was further explored in studies of embryos overexpressing BMP-4, or chordin, in bmp-deficient swirl and snailhouse mutants, and chordin-deficient chordino mutants. These studies demonstrate that, in zebrafish, spi1 marks a rostral population of LPM cells committed to a myeloid fate anatomically separated from and developmentally independent of erythroid commitment in the caudal LPM. Such complete anatomical and developmental dissociation of two hematopoietic lineages adds an interesting complexity to the understanding of vertebrate hematopoietic development and presents significant implications for the mechanisms regulating axial patterning
High-Resolution Positional Tracking for Long-Term Analysis of Drosophila Sleep and Locomotion Using the “Tracker” Program
Drosophila melanogaster has been used for decades in the study of circadian behavior, and more recently has become a popular model for the study of sleep. The classic method for monitoring fly activity involves counting the number of infrared beam crosses in individual small glass tubes. Incident recording methods such as this can measure gross locomotor activity, but they are unable to provide details about where the fly is located in space and do not detect small movements (i.e. anything less than half the enclosure size), which could lead to an overestimation of sleep and an inaccurate report of the behavior of the fly. This is especially problematic if the fly is awake, but is not moving distances that span the enclosure. Similarly, locomotor deficiencies could be incorrectly classified as sleep phenotypes. To address these issues, we have developed a locomotor tracking technique (the “Tracker” program) that records the exact location of a fly in real time. This allows for the detection of very small movements at any location within the tube. In addition to circadian locomotor activity, we are able to collect other information, such as distance, speed, food proximity, place preference, and multiple additional parameters that relate to sleep structure. Direct comparisons of incident recording and our motion tracking application using wild type and locomotor-deficient (CASK-β null) flies show that the increased temporal resolution in the data from the Tracker program can greatly affect the interpretation of the state of the fly. This is especially evident when a particular condition or genotype has strong effects on the behavior, and can provide a wealth of information previously unavailable to the investigator. The interaction of sleep with other behaviors can also be assessed directly in many cases with this method
- …