13 research outputs found

    MICROBIAL DIVERSITY THROUGH SPACE AND TIME: DISPERSAL AND DORMANCY IN MICROBIAL COMMUNITIES

    Get PDF
    Thesis (Ph.D.) - Indiana University, Biology/University Graduate School, 2020Microorganisms are the most diverse organisms on the planet. Understanding the processes by which they are assembled into communities across space and time is a primary goal of microbial ecology. I employed empirical and simulation studies to investigate the effects of dispersal and dormancy on patterns of microbial biodiversity. Microorganisms are thought to have high rates of dispersal, linking communities across space to form a metacommunity. In Chapter 1, I investigated the importance of local- versus regional-scale processes for the assembly of planktonic and sediment-associated bacterial communities in a stream network. Using phylogenetic and taxonomic null models, I found habitat-specific spatial patterns of community assembly in the network, demonstrating the potentially overlooked importance of vertical habitat structure for microbial diversity in stream metacommunities. In Chapter 2, I investigated the roles of biotic interactions and dormancy for the maintenance of microbial biodiversity in University Lake, Indiana, USA. By comparing metabolically active and total diversity in a high-resolution time series, I found evidence that stabilizing biotic interactions allow taxa to persist at the local scale, aided by a dormant seed bank. In Chapter 3, I synthesized the roles of dispersal and dormancy in metacommunity ecology by analyzing empirical data and simulation models. In Chapter 4, I tested predictions about the effects of dormancy and dispersal in University Lake. Dispersal from the neighboring terrestrial ecosystem influenced diversity near the terrestrialaquatic interface. However, most terrestrial-derived bacteria were apparently dormant, with only a few taxa reaching high abundances in the metabolically active portion of the aquatic community. Taken together, this dissertation provides empirical demonstrations of how dispersal and dormancy affect microbial communities in nature. More broadly, it develops novel insights into the roles of dispersal and dormancy in metacommunities

    Toward a Generalizable Framework of Disturbance Ecology Through Crowdsourced Science

    Get PDF
    © 2021 Graham, Averill, Bond-Lamberty, Knelman, Krause, Peralta, Shade, Smith, Cheng, Fanin, Freund, Garcia, Gibbons, Van Goethem, Guebila, Kemppinen, Nowicki, Pausas, Reed, Rocca, Sengupta, Sihi, Simonin, Słowiński, Spawn, Sutherland, Tonkin, Wisnoski, Zipper and Contributor Consortium.Disturbances fundamentally alter ecosystem functions, yet predicting their impacts remains a key scientific challenge. While the study of disturbances is ubiquitous across many ecological disciplines, there is no agreed-upon, cross-disciplinary foundation for discussing or quantifying the complexity of disturbances, and no consistent terminology or methodologies exist. This inconsistency presents an increasingly urgent challenge due to accelerating global change and the threat of interacting disturbances that can destabilize ecosystem responses. By harvesting the expertise of an interdisciplinary cohort of contributors spanning 42 institutions across 15 countries, we identified an essential limitation in disturbance ecology: the word ‘disturbance’ is used interchangeably to refer to both the events that cause, and the consequences of, ecological change, despite fundamental distinctions between the two meanings. In response, we developed a generalizable framework of ecosystem disturbances, providing a well-defined lexicon for understanding disturbances across perspectives and scales. The framework results from ideas that resonate across multiple scientific disciplines and provides a baseline standard to compare disturbances across fields. This framework can be supplemented by discipline-specific variables to provide maximum benefit to both inter- and intra-disciplinary research. To support future syntheses and meta-analyses of disturbance research, we also encourage researchers to be explicit in how they define disturbance drivers and impacts, and we recommend minimum reporting standards that are applicable regardless of scale. Finally, we discuss the primary factors we considered when developing a baseline framework and propose four future directions to advance our interdisciplinary understanding of disturbances and their social-ecological impacts: integrating across ecological scales, understanding disturbance interactions, establishing baselines and trajectories, and developing process-based models and ecological forecasting initiatives. Our experience through this process motivates us to encourage the wider scientific community to continue to explore new approaches for leveraging Open Science principles in generating creative and multidisciplinary ideas.This research was supported by the U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of Subsurface Biogeochemical Research Program’s Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under contract DE-AC06-76RLO 1830

    Differential effects of press vs. pulse seawater intrusion on microbial communities of a tidal freshwater marsh

    No full text
    Abstract Tidal freshwater marshes (TFMs) are threatened by seawater intrusion, which can affect microbial communities and alter biogeochemical processes. Here, we report on a long‐term, large‐scale manipulative field experiment that investigated continuous (press) and episodic (pulse, 2 months/yr) inputs of brackish water on microbial communities in a TFM. After 2.5 yr, microbial diversity was lower in press treatments than in control (untreated) plots whereas diversity in pulse plots was unaffected by brackish water additions. Sulfate reducer abundance increased in response to both press and pulse treatments whereas methanogens did not differ among treatments. Our results, along with other lab and field measurements that show reduced soil respiration and extracellular enzyme activity suggest that continuous seawater intrusion will decrease macrophyte C inputs that reduce bacterial diversity in ways that also diminish ecosystem carbon cycling

    Novel Insights to Be Gained From Applying Metacommunity Theory to Long-Term, Spatially Replicated Biodiversity Data

    Get PDF
    Global loss of biodiversity and its associated ecosystem services is occurring at an alarming rate and is predicted to accelerate in the future. Metacommunity theory provides a framework to investigate multi-scale processes that drive change in biodiversity across space and time. Short-term ecological studies across space have progressed our understanding of biodiversity through a metacommunity lens, however, such snapshots in time have been limited in their ability to explain which processes, at which scales, generate observed spatial patterns. Temporal dynamics of metacommunities have been understudied, and large gaps in theory and empirical data have hindered progress in our understanding of underlying metacommunity processes that give rise to biodiversity patterns. Fortunately, we are at an important point in the history of ecology, where long-term studies with cross-scale spatial replication provide a means to gain a deeper understanding of the multiscale processes driving biodiversity patterns in time and space to inform metacommunity theory. The maturation of coordinated research and observation networks, such as the United States Long Term Ecological Research (LTER) program, provides an opportunity to advance explanation and prediction of biodiversity change with observational and experimental data at spatial and temporal scales greater than any single research group could accomplish. Synthesis of LTER network community datasets illustrates that long-term studies with spatial replication present an under-utilized resource for advancing spatio-temporal metacommunity research. We identify challenges towards synthesizing these data and present recommendations for addressing these challenges. We conclude with insights about how future monitoring efforts by coordinated research and observation networks could further the development of metacommunity theory and its applications aimed at improving conservation efforts

    The dual nature of metacommunity variability

    Get PDF
    There is increasing interest in measuring ecological stability to understand how communities and ecosystems respond to broad-scale global changes. One of the most common approaches is to quantify the variation through time in community or ecosystem aggregate attributes (e.g. total biomass), referred to as aggregate variability. It is now widely recognized that aggregate variability represents only one aspect of communities and ecosystems, and compositional variability, the changes in the relative frequency of species in an assemblage, is equally important. Recent contributions have also begun to explore ecological stability at regional spatial scales, where interconnected local communities form metacommunities, a key concept in managing complex landscapes. However, the conceptual frameworks and measures of ecological stability in space have only focused on aggregate variability, leaving a conceptual gap. Here, we address this gap with a novel framework for quantifying the aggregate and compositional variability of communities and ecosystems through space and time. We demonstrate that the compositional variability of a metacommunity depends on the degree of spatial synchrony in compositional trajectories among local communities. We then provide a conceptual framework in which compositional variability of 1) the metacommunity through time and 2) among local communities combine into four archetype scenarios: spatial stasis (low/low), spatial synchrony (high/low), spatial asynchrony (high/high) and spatial compensation (low/high). We illustrate this framework based on numerical examples and a case study of a macroalgal metacommunity in which low spatial synchrony reduced variability in aggregate biomass at the metacommunity scale, while masking high spatial synchrony in compositional trajectories among local communities. Finally, we discuss the role of dispersal, environmental heterogeneity, species interactions and suggest future avenues. We believe this framework will be helpful for considering both aspects of variability simultaneously, which is important to better understand ecological stability in natural and complex landscapes in response to environmental changes

    Diversity–stability relationships across organism groups and ecosystem types become decoupled across spatial scales

    No full text
    The relationship between biodiversity and stability, or its inverse, temporal variability, is multidimensional and complex. Temporal variability in aggregate properties, like total biomass or abundance, is typically lower in communities with higher species diversity (i.e., the diversity–stability relationship or DSR). At broader spatial extents, regional-scale aggregate variability is also lower with higher regional diversity (in plant systems) and with lower spatial synchrony. However, focusing exclusively on aggregate properties of communities may overlook potentially destabilizing compositional shifts. It is not yet clear how diversity is related to different components of variability across spatial scales, nor whether regional DSRs emerge across a broad range of organisms and ecosystem types. To test these questions, we compiled a large collection of long-term metacommunity data spanning a wide range of taxonomic groups (e.g., birds, fish, plants, invertebrates) and ecosystem types (e.g., deserts, forests, oceans). We applied a newly developed quantitative framework for jointly analyzing aggregate and compositional variability across scales. We quantified DSRs for composition and aggregate variability in local communities and metacommunities. At the local scale, more diverse communities were less variable, but this effect was stronger for aggregate than compositional properties. We found no stabilizing effect of γ-diversity on metacommunity variability, but β-diversity played a strong role in reducing compositional spatial synchrony, which reduced regional variability. Spatial synchrony differed among taxa, suggesting differences in stabilization by spatial processes. However, metacommunity variability was more strongly driven by local variability than by spatial synchrony. Across a broader range of taxa, our results suggest that high γ-diversity does not consistently stabilize aggregate properties at regional scales without sufficient spatial β-diversity to reduce spatial synchrony

    Solute Transport and Transformation in an Intermittent, Headwater Mountain Stream with Diurnal Discharge Fluctuations

    Get PDF
    Time-variable discharge is known to control both transport and transformation of solutes in the river corridor. Still, few studies consider the interactions of transport and transformation together. Here, we consider how diurnal discharge fluctuations in an intermittent, headwater stream control reach-scale solute transport and transformation as measured with conservative and reactive tracers during a period of no precipitation. One common conceptual model is that extended contact times with hyporheic zones during low discharge conditions allows for increased transformation of reactive solutes. Instead, we found tracer timescales within the reach were related to discharge, described by a single discharge-variable StorAge Selection function. We found that Resazurin to Resorufin (Raz-to-Rru) transformation is static in time, and apparent differences in reactive tracer were due to interactions with different ages of storage, not with time-variable reactivity. Overall we found reactivity was highest in youngest storage locations, with minimal Raz-to-Rru conversion in waters older than about 20 h of storage in our study reach. Therefore, not all storage in the study reach has the same potential biogeochemical function and increasing residence time of solute storage does not necessarily increase reaction potential of that solute, contrary to prevailing expectations.ISSN:2073-444

    Co-located contemporaneous mapping of morphological, hydrological, chemical, and biological conditions in a 5th-order mountain stream network, Oregon, USA

    No full text
    A comprehensive set of measurements and calculated metrics describing physical, chemical, and biological conditions in the river corridor is presented. These data were collected in a catchment-wide, synoptic campaign in the H. J. Andrews Experimental Forest (Cascade Mountains, Oregon, USA) in summer 2016 during low-discharge conditions. Extensive characterization of 62 sites including surface water, hyporheic water, and streambed sediment was conducted spanning 1st- through 5th-order reaches in the river network. The objective of the sample design and data acquisition was to generate a novel data set to support scaling of river corridor processes across varying flows and morphologic forms present in a river network. The data are available at https://doi.org/10.4211/hs.f4484e0703f743c696c2e1f209abb842 (Ward, 2019).ISSN:1866-3516ISSN:1866-350

    Co-located contemporaneous mapping of morphological, hydrological, chemical, and biological conditions in a 5th-order mountain stream network, Oregon, USA

    No full text
    A comprehensive set of measurements and calculated metrics describing physical, chemical, and biological conditions in the river corridor is presented. These data were collected in a catchment-wide, synoptic campaign in the H. J. Andrews Experimental Forest (Cascade Mountains, Oregon, USA) in summer 2016 during low-discharge conditions. Extensive characterization of 62 sites including surface water, hyporheic water, and streambed sediment was conducted spanning 1st- through 5th-order reaches in the river network. The objective of the sample design and data acquisition was to generate a novel data set to support scaling of river corridor processes across varying flows and morphologic forms present in a river network

    Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network

    Get PDF
    Although most field and modeling studies of river corridor exchange have been conducted at scales ranging from tens to hundreds of meters, results of these studies are used to predict their ecological and hydrological influences at the scale of river networks. Further complicating prediction, exchanges are expected to vary with hydrologic forcing and the local geomorphic setting. While we desire predictive power, we lack a complete spatiotemporal relationship relating discharge to the variation in geologic setting and hydrologic forcing that is expected across a river basin. Indeed, the conceptual model of Wondzell (2011) predicts systematic variation in river corridor exchange as a function of (1) variation in baseflow over time at a fixed location, (2) variation in discharge with location in the river network, and (3) local geomorphic setting. To test this conceptual model we conducted more than 60 solute tracer studies including a synoptic campaign in the 5th-order river network of the H. J. Andrews Experimental Forest (Oregon, USA) and replicate-in-time experiments in four watersheds. We interpret the data using a series of metrics describing river corridor exchange and solute transport, testing for consistent direction and magnitude of relationships relating these metrics to discharge and local geomorphic setting. We confirmed systematic decrease in river corridor exchange space through the river networks, from headwaters to the larger main stem. However, we did not find systematic variation with changes in discharge through time or with local geomorphic setting. While interpretation of our results is complicated by problems with the analytical methods, the results are sufficiently robust for us to conclude that space-for-time and time-for-space substitutions are not appropriate in our study system. Finally, we suggest two strategies that will improve the interpretability of tracer test results and help the hyporheic community develop robust datasets that will enable comparisons across multiple sites and/or discharge conditions.ISSN:1027-5606ISSN:1607-793
    corecore