3,542 research outputs found

    A case of recurrent epilepsy-associated rosette-forming glioneuronal tumor with anaplastic transformation in the absence of therapy.

    Get PDF
    Rosette-forming glioneuronal tumor (RGNT) most commonly occurs adjacent to the fourth ventricle and therefore rarely presents with epilepsy. Recent reports describe RGNT occurrence in other anatomical locations with considerable morphologic and genetic overlap with the epilepsy-associated dysembryoplastic neuroepithelial tumor (DNET). Examples of RGNT or DNET with anaplastic change are rare, and typically occur in the setting of radiation treatment. We present the case of a 5-year-old girl with seizures, who underwent near total resection of a cystic temporal lobe lesion. Pathology showed morphologic and immunohistochemical features of RGNT, albeit with focally overlapping DNET-like patterns. Resections of residual or recurrent tumor were performed 1 year and 5 years after the initial resection, but no adjuvant radiation or chemotherapy was given. Ten years after the initial resection, surveillance imaging identified new and enhancing nodules, leading to another gross total resection. This specimen showed areas similar to the original tumor, but also high-grade foci with oligodendroglial morphology, increased cellularity, palisading necrosis, microvascular proliferation, and up to 13 mitotic figures per 10 high power fields. Ancillary studies the status by sequencing showed wild-type of the isocitrate dehydrogenase 1 (IDH1), IDH2, and human histone 3.3 (H3F3A) genes, and BRAF studies were negative for mutation or rearrangement. Fluorescence in situ hybridization (FISH) showed codeletion of 1p and 19q limited to the high-grade regions. By immunohistochemistry there was loss of nuclear alpha-thalassemia mental retardation syndrome, X-linked (ATRX) expression only in the high-grade region. Next-generation sequencing showed an fibroblast growth factor receptor receptor 1 (FGFR1) kinase domain internal tandem duplication in three resection specimens. ATRX mutation in the high-grade tumor was confirmed by sequencing which showed a frameshift mutation (p.R1427fs), while the apparent 1p/19q-codeletion by FISH was due to loss of chromosome arm 1p and only partial loss of 19q. Exceptional features of this case include the temporal lobe location, 1p/19q loss by FISH without true whole-arm codeletion, and anaplastic transformation associated with ATRX mutation without radiation or chemotherapy

    Exploring General Gauge Mediation

    Get PDF
    We explore various aspects of General Gauge Mediation(GGM). We present a reformulation of the correlation functions used in GGM, and further elucidate their IR and UV properties. Additionally we clarify the issue of UV sensitivity in the calculation of the soft masses in the MSSM, highlighting the role of the supertrace over the messenger spectrum. Finally, we present weakly coupled messenger models which fully cover the parameter space of GGM. These examples demonstrate that the full parameter space of GGM is physical and realizable. Thus it should be considered a valid basis for future phenomenological explorations of gauge mediation.Comment: 27 pages, minor changes, typos fixed in appendix

    The effect of sleep restriction, with or without high-intensity interval exercise, on myofibrillar protein synthesis in healthy young men

    Get PDF
    © 2020 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. Key points: Sleep restriction has previously been associated with the loss of muscle mass in both human and animal models. The rate of myofibrillar protein synthesis (MyoPS) is a key variable in regulating skeletal muscle mass and can be increased by performing high-intensity interval exercise (HIIE), although the effect of sleep restriction on MyoPS is unknown. In the present study, we demonstrate that participants undergoing a sleep restriction protocol (five nights, with 4 h in bed each night) had lower rates of skeletal muscle MyoPS; however, rates of MyoPS were maintained at control levels by performing HIIE during this period. Our data suggest that the lower rates of MyoPS in the sleep restriction group may contribute to the detrimental effects of sleep loss on muscle mass and that HIIE may be used as an intervention to counteract these effects. Abstract: The present study aimed to investigate the effect of sleep restriction, with or without high-intensity interval exercise (HIIE), on the potential mechanisms underpinning previously-reported sleep-loss-induced reductions to muscle mass. Twenty-four healthy, young men underwent a protocol consisting of two nights of controlled baseline sleep and a five-night intervention period. Participants were allocated into one of three parallel groups, matched for age, (Formula presented.), body mass index and habitual sleep duration; a normal sleep (NS) group [8 h time in bed (TIB) each night], a sleep restriction (SR) group (4 h TIB each night), and a sleep restriction and exercise group (SR+EX, 4 h TIB each night, with three sessions of HIIE). Deuterium oxide was ingested prior to commencing the study and muscle biopsies obtained pre- and post-intervention were used to assess myofibrillar protein synthesis (MyoPS) and molecular markers of protein synthesis and degradation signalling pathways. MyoPS was lower in the SR group [fractional synthetic rate (% day–1), mean ± SD, 1.24 ± 0.21] compared to both the NS (1.53 ± 0.09) and SR+EX groups (1.61 ± 0.14) (P < 0.05). However, there were no changes in the purported regulators of protein synthesis (i.e. p-AKTser473 and p-mTORser2448) and degradation (i.e. Foxo1/3 mRNA and LC3 protein) in any group. These data suggest that MyoPS is acutely reduced by sleep restriction, although MyoPS can be maintained by performing HIIE. These findings may explain the sleep-loss-induced reductions in muscle mass previously reported and also highlight the potential therapeutic benefit of HIIE to maintain myofibrillar remodelling in this context
    • …
    corecore