78 research outputs found

    Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform

    Get PDF
    The potential of close-range hyperspectral imaging (HSI) as a tool for detecting early drought stress responses in plants grown in a high-throughput plant phenotyping platform (HTPPP) was explored. Reflectance spectra from leaves in close-range imaging are highly influenced by plant geometry and its specific alignment towards the imaging system. This induces high uninformative variability in the recorded signals, whereas the spectral signature informing on plant biological traits remains undisclosed. A linear reflectance model that describes the effect of the distance and orientation of each pixel of a plant with respect to the imaging system was applied. By solving this model for the linear coefficients, the spectra were corrected for the uninformative illumination effects. This approach, however, was constrained by the requirement of a reference spectrum, which was difficult to obtain. As an alternative, the standard normal variate (SNV) normalisation method was applied to reduce this uninformative variability. Once the envisioned illumination effects were eliminated, the remaining differences in plant spectra were assumed to be related to changes in plant traits. To distinguish the stress-related phenomena from regular growth dynamics, a spectral analysis procedure was developed based on clustering, a supervised band selection, and a direct calculation of a spectral similarity measure against a reference. To test the significance of the discrimination between healthy and stressed plants, a statistical test was conducted using a one-way analysis of variance (ANOVA) technique. The proposed analysis techniques was validated with HSI data of maize plants (Zea mays L.) acquired in a HTPPP for early detection of drought stress in maize plant. Results showed that the pre-processing of reflectance spectra with the SNV effectively reduces the variability due to the expected illumination effects. The proposed spectral analysis method on the normalized spectra successfully detected drought stress from the third day of drought induction, confirming the potential of HSI for drought stress detection studies and further supporting its adoption in HTPPP

    Regional accuracy of ZTE-based attenuation correction in static and dynamic brain PET/MR

    Full text link
    Accurate MR-based attenuation correction (MRAC) is essential for quantitative PET/MR imaging of the brain. In this study, we analyze the regional bias caused by MRAC based on Zero-Echo-Time MR images (ZTEAC) compared to CT-based AC (CTAC) in static and dynamic PET imaging. In addition the results are compared to the performance of the current default Atlas-based AC (AtlasAC) implemented in the GE SIGNA PET/MR. Methods: Thirty static [18F]FDG and 11 dynamic [18}F]PE2I acquisitions from a GE SIGNA PET/MR were reconstructed using ZTEAC (using a research tool, GE Healthcare), single-subject AtlasAC (the current default AC in GE's SIGNA PET/MR) and CTAC (from a PET/CT acquisition of the same day). In the 30 static [18F]FDG reconstructions, the bias caused by ZTEAC and AtlasAC in the mean uptake of 85 anatomical volumes of interest (VOIs) of the Hammers' atlas was analyzed in PMOD. For the 11 dynamic [18}F]PE2I reconstructions, the bias caused by ZTEAC and AtlasAC in the non displaceable binding potential BPnd in the striatum was calculated with cerebellum as the reference region and a simplified reference tissue model. Results: The regional bias caused by ZTEAC in the static [18F]FDG reconstructions ranged from -8.0% to +7.7% (mean 0.1%, SD 2.0%). For AtlasAC this bias ranged from -31.6% to +16.6% (mean -0.4%, SD 4.3%). The bias caused by AtlasAC showed a clear gradient in the cranio-caudal direction (-4.2% in the cerebellum, +6.6% in the left superior frontal gyrus). The bias in the striatal BPnd for the [18F]PE2I reconstructions ranged from -0.8% to +4.8% (mean 1.5%, SD 1.4%) using ZTEAC and from -0.6% to +9.4% using AtlasAC (mean 4.2%, SD 2.6%). Conclusion: ZTEAC provides excellent quantitative accuracy for static and dynamic brain PET/MR, comparable to CTAC, and is clearly superior to the default AtlasAC currently implemented in the GE SIGNA PET/MR.Comment: 23 pages in total, 7 figures, 1 table, 3 supplementary figures, 5 supplementary table

    Proximal hyperspectral imaging detects diurnal and drought-induced changes in maize physiology

    Get PDF
    Hyperspectral imaging is a promising tool for non-destructive phenotyping of plant physiological traits, which has been transferred from remote to proximal sensing applications, and from manual laboratory setups to automated plant phenotyping platforms. Due to the higher resolution in proximal sensing, illumination variation and plant geometry result in increased non-biological variation in plant spectra that may mask subtle biological differences. Here, a better understanding of spectral measurements for proximal sensing and their application to study drought, developmental and diurnal responses was acquired in a drought case study of maize grown in a greenhouse phenotyping platform with a hyperspectral imaging setup. The use of brightness classification to reduce the illumination-induced non-biological variation is demonstrated, and allowed the detection of diurnal, developmental and early drought-induced changes in maize reflectance and physiology. Diurnal changes in transpiration rate and vapor pressure deficit were significantly correlated with red and red-edge reflectance. Drought-induced changes in effective quantum yield and water potential were accurately predicted using partial least squares regression and the newly developed Water Potential Index 2, respectively. The prediction accuracy of hyperspectral indices and partial least squares regression were similar, as long as a strong relationship between the physiological trait and reflectance was present. This demonstrates that current hyperspectral processing approaches can be used in automated plant phenotyping platforms to monitor physiological traits with a high temporal resolution

    Plaidoyer universitaire pour le rail

    Full text link
    [Chapeau] Le réseau ferré en Wallonie s’apparentera bientôt à un train touristique reliant deux gares Calatrava plutôt que d’assurer à chacun le droit à sa mobilité

    Development and Potential Usefulness of the COVID-19 Ag Respi-Strip Diagnostic Assay in a Pandemic Context

    Get PDF
    Introduction: COVID-19 Ag Respi-Strip, an immunochromatographic (ICT) assay for the rapid detection of SARS-CoV-2 antigen on nasopharyngeal specimen, has been developed to identify positive COVID-19 patients allowing prompt clinical and quarantine decisions. In this original research article, we describe the conception, the analytical and clinical performances as well as the risk management of implementing the COVID-19 Ag Respi-Strip in a diagnostic decision algorithm. Materials and Methods: Development of the COVID-19 Ag Respi-Strip resulted in a ready-to-use ICT assay based on a membrane technology with colloidal gold nanoparticles using monoclonal antibodies directed against the SARS-CoV and SARS-CoV-2 highly conserved nucleoprotein antigen. Four hundred observations were recorded for the analytical performance study and thirty tests were analyzed for the crossreactivity study. The clinical performance study was performed in a retrospective multicentric evaluation on aliquots of 328 nasopharyngeal samples. COVID-19 Ag Respi-Strip results were compared with qRT-PCR as golden standard for COVID-19 diagnostics. Results: In the analytical performance study, the reproducibility showed a between-observer disagreement of 1.7%, a robustness of 98%, an overall satisfying user friendliness and no cross-reactivity with other virus-infected nasopharyngeal samples. In the clinical performance study performed in three different clinical laboratories during the ascendant phase of the epidemiological curve, we found an overall sensitivity and specificity of 57.6 and 99.5%, respectively with an accuracy of 82.6%. The cut-off of the ICT was found at CT < 22. User-friendliness analysis and risk management assessment through Ishikawa diagram demonstrate that COVID-19 Ag Respi-Strip may be implemented in clinical laboratories according to biosafety recommendations. Conclusion: The COVID-19 Ag Respi-Strip represents a promising rapid SARS-CoV-2 antigen assay for the first-line diagnosis of COVID-19 in 15min at the peak of the pandemic. Its role in the proposed diagnostic algorithm is complementary to the currently-used molecular techniques

    Epidemiology, clinical features and management of autoimmune hepatitis in Switzerland: a retrospective and prospective cohort study

    Get PDF
    BACKGROUND AND AIMS: The Swiss Autoimmune Hepatitis Cohort Study is a nationwide registry, initiated in 2017, that collects retrospective and prospective clinical data and biological samples from patients of all ages with autoimmune hepatitis treated at Swiss hepatology centres. Here, we report the analysis of the first 5 years of registry data. RESULTS: A total of 291 patients with autoimmune hepatitis have been enrolled, 30 of whom were diagnosed before 18 years of age and composed the paediatric cohort. Paediatric cohort: median age at diagnosis 12.5 years (range 1–17, interquartile range (IQR) 8–15), 16 (53%) girls, 6 (32%) with type 2 autoimmune hepatitis, 8 (27%) with autoimmune sclerosing cholangitis, 1 with primary biliary cholangitis variant syndrome, 4 (15%) with inflammatory bowel disease and 10 (41%) with advanced liver fibrosis at diagnosis. Adult cohort: median age at diagnosis 54 years (range 42–64, IQR 18–81), 185 (71%) women, 51 (20%) with primary biliary cholangitis variant syndrome, 22 (8%) with primary sclerosing cholangitis variant syndrome, 9 (4%) with inflammatory bowel disease and 66 (32%) with advanced liver fibrosis at diagnosis. The median follow-up time for the entire cohort was 5.2 years (IQR 3–9.3 years). Treatment in children: 29 (97%) children were initially treated with corticosteroids, 28 of whom received combination treatment with azathioprine. Budesonide was used in four children, all in combination with azathioprine. Mycophenolate mofetil was used in five children, all of whom had previously received corticosteroids and thiopurine. Treatment in adults (data available for 228 patients): 219 (96%) were treated with corticosteroids, mostly in combination with azathioprine. Predniso(lo)ne was the corticosteroid used in three-quarters of patients; the other patients received budesonide. A total of 78 (33%) patients received mycophenolate mofetil, 62 of whom had previously been treated with azathioprine. Complete biochemical response was achieved in 13 of 19 (68%) children and 137 of 182 (75%) adults with available follow-up data. All children were alive at the last follow-up, and none had undergone liver transplantation. Five (2%) adults underwent liver transplantation, two of whom had a fulminant presentation. Four (2%) adults with autoimmune hepatitis died (two from liver-associated causes). CONCLUSION: Patients with autoimmune hepatitis in Switzerland had clinical features similar to those in other cohorts. The proportion of patients diagnosed with primary biliary cholangitis variant syndrome was higher than expected. Autoimmune hepatitis was managed according to guidelines, except for the use of budesonide in a small proportion of paediatric patients. The outcomes were excellent, but the findings must be confirmed over a longer follow-up period

    Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. II. Immunobiological Dysfunctions

    Get PDF
    Trypanosoma vivax is the main species involved in trypanosomosis, but very little is known about the immunobiology of the infective process caused by this parasite. Recently we undertook to further characterize the main parasitological, haematological and pathological characteristics of mouse models of T. vivax infection and noted severe anemia and thrombocytopenia coincident with rising parasitemia. To gain more insight into the organism's immunobiology, we studied lymphocyte populations in central (bone marrow) and peripherical (spleen and blood) tissues following mouse infection with T. vivax and showed that the immune system apparatus is affected both quantitatively and qualitatively. More precisely, after an initial increase that primarily involves CD4+ T cells and macrophages, the number of splenic B cells decreases in a step-wise manner. Our results show that while infection triggers the activation and proliferation of Hematopoietic Stem Cells, Granulocyte-Monocyte, Common Myeloid and Megacaryocyte Erythrocyte progenitors decrease in number in the course of the infection. An in-depth analysis of B-cell progenitors also indicated that maturation of pro-B into pre-B precursors seems to be compromised. This interferes with the mature B cell dynamics and renewal in the periphery. Altogether, our results show that T. vivax induces profound immunological alterations in myeloid and lymphoid progenitors which may prevent adequate control of T. vivax trypanosomosis
    • …
    corecore