62 research outputs found

    The 5S rRNA maturase, ribonuclease M5, is a Toprim domain family member

    Get PDF
    The maturation of 5S ribosomal RNA in low G+C Gram-positive bacteria is catalyzed by a highly conserved, ∼190 residue, enzyme, called ribonuclease M5 (RNase M5). Sequence alignment had predicted that the N-terminal half of RNase M5 would consist of a Toprim domain, a protein fold found in type IA and type II topoisomerases, DnaG-like primases, OLD family nucleases and RecR proteins [L. Aravind, D. D. Leipe and E. V. Koonin (1998) Nucleic Acids Res., 26, 4205–4213]. Here, we present structural modelling data and a mutational analysis of RNase M5 that confirms this hypothesis. The N-terminal half of RNase M5 can be fitted to the Toprim domain of the DnaG catalytic core. Mutation of amino acid residues highly conserved among RNase M5 enzymes and members of the Toprim domain family showed that alteration of residues critical for topoisomerase and primase activity also had a dramatic effect on the cleavage of 5S rRNA precursor by RNase M5 both in vivo and in vitro. This suggests that the mechanisms of double-stranded RNA cleavage by RNase M5 and double-stranded DNA cleavage by members of the topoisomerase family are related

    Six domesticated PiggyBac transposases together carry out programmed DNA elimination in .

    Get PDF
    The domestication of transposable elements has repeatedly occurred during evolution and domesticated transposases have often been implicated in programmed genome rearrangements, as remarkably illustrated in ciliates. In , PiggyMac (Pgm), a domesticated PiggyBac transposase, carries out developmentally programmed DNA elimination, including the precise excision of tens of thousands of gene-interrupting germline Internal Eliminated Sequences (IESs). Here, we report the discovery of five groups of distant Pgm-like proteins (PgmLs), all able to interact with Pgm and essential for its nuclear localization and IES excision genome-wide. Unlike Pgm, PgmLs lack a conserved catalytic site, suggesting that they rather have an architectural function within a multi-component excision complex embedding Pgm. PgmL depletion can increase erroneous targeting of residual Pgm-mediated DNA cleavage, indicating that PgmLs contribute to accurately position the complex on IES ends. DNA rearrangements in constitute a rare example of a biological process jointly managed by six distinct domesticated transposases

    Clinical and molecular epidemiological features of critically ill patients with invasive group A Streptococcus infections: a Belgian multicenter case-series.

    Full text link
    peer reviewed[en] BACKGROUND: Recent alerts have highlighted an increase in group A streptococcal (GAS) infections since 2022 in Europe and the United States. Streptococcus pyogenes can cause limited skin or mucosal disease, but can also present as severe invasive disease necessitating critical care. We performed a multicenter retrospective study of patients with GAS infections recently admitted to Belgian intensive care units (ICUs) since January 2022. We describe patient characteristics and investigate the molecular epidemiology of the S. pyogenes strains involved. RESULTS: Between January 2022 and May 2023, a total of 86 cases (56 adults, 30 children) with GAS disease were admitted to critical care in the university hospitals of Leuven, Antwerp and Liège. We noted a strikingly high incidence of severe community-acquired pneumonia (sCAP) (45% of adults, 77% of children) complicated with empyema in 45% and 83% of adult and pediatric cases, respectively. Two-thirds of patients with S. pyogenes pneumonia had viral co-infection, with influenza (13 adults, 5 children) predominating. Other disease presentations included necrotizing fasciitis (23% of adults), other severe skin/soft tissue infections (16% of adults, 13% of children) and ear/nose/throat infections (13% of adults, 13% of children). Cardiogenic shock was frequent (36% of adults, 20% of children). Fifty-six patients (65%) had toxic shock syndrome. Organ support requirements were high and included invasive mechanical ventilation (77% of adults, 50% of children), renal replacement therapy (29% of adults, 3% of children) and extracorporeal membrane oxygenation (20% of adults, 7% of children). Mortality was 21% in adults and 3% in children. Genomic analysis of S. pyogenes strains from 55 out of 86 patients showed a predominance of emm1 strains (73%), with a replacement of the M1global lineage by the toxigenic M1UK lineage (83% of emm1 strains were M1UK). CONCLUSIONS: The recent rise of severe GAS infections (2022-23) is associated with introduction of the M1UK lineage in Belgium, but other factors may be at play-including intense circulation of respiratory viruses and potentially an immune debt after the COVID pandemic. Importantly, critical care physicians should include S. pyogenes as causative pathogen in the differential diagnosis of sCAP

    Characterization of cytokine profiles and double-positive lymphocyte subpopulations in normal bovine lungs

    No full text
    Objective - To characterize cytokine profiles and lymphocyte subpopulations in lung parenchyma and bronchoalveolar lavage (BAL) fluid from normal bovine lungs. Animals - Eight 12- to 18-month-old cattle. Procedure - Cell populations in BAL fluid and collagenase-digested lung parenchyma were analyzed by flow cytometry and monoclonal antibodies. Proportions of total cell populations were determined, using Giemsa-stained cytospots. Distribution of lymphocytes within the lung parenchyma was analyzed by immunohistochemistry, and cytokine mRNA species in the parenchyma were characterized by use of reverse transcriptase-polymerase chain reaction analysis. Results - Cytokine profiles indicated high amounts of mRNA for interleukins 6 and 10 and transforming growth factor β. In the BAL fluid and lung parenchyma, macrophages were the predominant cell type, although the proportion was lower in the parenchyma. Lymphocytes made up approximately 3% of both cell populations. Common to both lung compartments was the predominance of CD2 and γδ T cells over B lymphocytes. There were more CD8 T cells than CD4 T cells in both compartments. The γδ cells made up approximately 9% of the lymphocyte populations. Two-color flow cytometry revealed CD8 γδ T cell and CD8CD5 populations that were unique to BAL fluid. In the BAL fluid and parenchyma, most CD4 and CD8 T cells expressed high amounts of CD44, a characteristic of memory T cells. The γδ T cells were CD44, as were B cells in the lung parenchyma. The B cells from BAL fluid expressed high amounts of CD44. Immunohistologic analysis of lung tissue revealed bronchus-associated lymphoid tissue structures with distinctive germinal center organization of B cells encompassed by CD4 T cells. Conclusions - Results provided normal values for comparison with those of other species and with the bovine respiratory tract response to disease

    TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements.

    Get PDF
    Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for the first time a specific role of TFIIS in non-coding transcription in eukaryotes
    corecore