14 research outputs found

    Microarray-Based Sketches of the HERV Transcriptome Landscape

    Get PDF
    Human endogenous retroviruses (HERVs) are spread throughout the genome and their long terminal repeats (LTRs) constitute a wide collection of putative regulatory sequences. Phylogenetic similarities and the profusion of integration sites, two inherent characteristics of transposable elements, make it difficult to study individual locus expression in a large-scale approach, and historically apart from some placental and testis-regulated elements, it was generally accepted that HERVs are silent due to epigenetic control. Herein, we have introduced a generic method aiming to optimally characterize individual loci associated with 25-mer probes by minimizing cross-hybridization risks. We therefore set up a microarray dedicated to a collection of 5,573 HERVs that can reasonably be assigned to a unique genomic position. We obtained a first view of the HERV transcriptome by using a composite panel of 40 normal and 39 tumor samples. The experiment showed that almost one third of the HERV repertoire is indeed transcribed. The HERV transcriptome follows tropism rules, is sensitive to the state of differentiation and, unexpectedly, seems not to correlate with the age of the HERV families. The probeset definition within the U3 and U5 regions was used to assign a function to some LTRs (i.e. promoter or polyA) and revealed that (i) autonomous active LTRs are broadly subjected to operational determinism (ii) the cellular gene density is substantially higher in the surrounding environment of active LTRs compared to silent LTRs and (iii) the configuration of neighboring cellular genes differs between active and silent LTRs, showing an approximately 8 kb zone upstream of promoter LTRs characterized by a drastic reduction in sense cellular genes. These gathered observations are discussed in terms of virus/host adaptive strategies, and together with the methods and tools developed for this purpose, this work paves the way for further HERV transcriptome projects

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Acute effects of partial-body vibration in sitting position

    Get PDF
    AIM: To investigate the acute effects of sinusoidal and stochastic resonance partial-body vibration in sitting position, including muscle activity, heart rate variability, balance and flexibility. METHODS: Fifty healthy participants were assigned randomly to two training conditions: A sinusoidal partial-body vibration (SIN, 8 Hz) or a stochastic resonance partial-body vibration (STOCH, 8 ± 2 Hz). For baseline assessment participants sat on the vibration platform without vibration. Both training conditions consisted of five series of a one-minute vibration training and a one-minute break between them. In this experimental study surface electromyography (EMG) of the erector spinae (ES), one of the back muscles, and heart rate variability (HRV) was measured at baseline and during training. Balance and flexibility were assessed at baseline and immediately after training. Balance was measured with the modified star excursion balance test (mSEBT) and flexibility was assessed through the modified fingertip-to-floor method (mFTF). RESULTS: Paired sample t-test showed a significant increase in balance that was restricted to STOCH (t = -2.22, P = 0.018; SIN: t = -0.09, P = 0.466). An increase in flexibility was also restricted to STOCH (t = 2.65, P = 0.007; SIN: t = 1.41, P = 0.086). There was no significant change of muscle activity in the ES-EMG in STOCH or SIN conditions. In both training conditions, HRV decreased significantly, but remained in a low-load range (STOCH: t = 2.89, P = 0.004; SIN: t = 2.55, P = 0.009). CONCLUSION: In sitting position, stochastic resonance partial-body vibration can improve balance and flexibility while cardiovascular load is low. STOCH can be a valuable training option to people who are unable to stand (e.g., people, who are temporarily wheelchair-bound)

    Touchscreen learning deficits and normal social approach behavior in the Shank3B model of Phelan–McDermid Syndrome and autism

    No full text
    SHANK3 is a synaptic scaffolding protein localized in the postsynaptic density and has a crucial role in synaptogenesis and neural physiology. Deletions and point mutations in SHANK3 cause Phelan-McDermid Syndrome (PMS), and have also been implicated in autism spectrum disorder (ASD) and intellectual disabilities, leading to the hypothesis that reduced SHANK3 expression impairs basic brain functions that are important for social communication and cognition. Several mouse models of Shank3 deletions have been generated, varying in the specific domain deleted. Here we report impairments in cognitive function in mice heterozygous for exon 13-16 (coding for the PDZ domain) deletion. The touchscreen pairwise discrimination task was chosen by virtue of its: (a) conceptual and technical similarities to the Cambridge Neuropsychological Test Automated Battery (CANTAB) and NIH Toolbox Cognition Battery used for testing cognitive functions in humans, (b) minimal demand on motor abilities, and (c) capability to measure many aspects of learning and memory and complex cognitive functions, including cognitive flexibility. The similarity between our mouse tasks and human cognitive assays means a high translational validity in future intervention studies using preclinical models. Our study revealed that Shank3B heterozygous mice (+/-) were slower to reach criterion in the pairwise visual discrimination task, and exhibited trends toward making more errors (first trial errors) and more correction errors than wildtype mice (+/+). Open field activity was normal in +/-, ruling out hypo- or hyperactivity as potential confounds in the touchscreen test. Sociability in the three chamber test was also normal in both +/+ and +/-. These results indicate a deficit in discrimination learning in the Shank3B model of PMS and ASD, suggesting that this mouse model is a useful preclinical tool for studying neurobiological mechanisms behind cognitive impairments in PMS and ASD. The current findings are the starting point for our future research in which we will investigate multiple domains of cognition and explore pharmacological interventions

    Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome

    No full text
    Maternally derived copy number gains of human chromosome 15q11.2-q13.3 (Dup15q syndrome or Dup15q) cause intellectual disability, epilepsy, developmental delay, hypotonia, speech impairments, and minor dysmorphic features. Dup15q syndrome is one of the most common and penetrant chromosomal abnormalities observed in individuals with autism spectrum disorder (ASD). Although ∌40 genes are located in the 15q11.2-q13.3 region, overexpression of the ubiquitin-protein E3A ligase (UBE3A) gene is thought to be the predominant molecular cause of the phenotypes observed in Dup15q syndrome. The UBE3A gene demonstrates maternal-specific expression in neurons and loss of maternal UBE3A causes Angelman syndrome, a neurodevelopmental disorder with some overlapping neurological features to Dup15q. To directly test the hypothesis that overexpression of UBE3A is an important underlying molecular cause of neurodevelopmental dysfunction, we developed and characterized a mouse overexpressing Ube3a isoform 2 in excitatory neurons. Ube3a isoform 2 is conserved between mouse and human and known to play key roles in neuronal function. Transgenic mice overexpressing Ube3a isoform 2 in excitatory forebrain neurons exhibited increased anxiety-like behaviors, learning impairments, and reduced seizure thresholds. However, these transgenic mice displayed normal social approach, social interactions, and repetitive motor stereotypies that are relevant to ASD. Reduced forebrain, hippocampus, striatum, amygdala, and cortical volume were also observed. Altogether, these findings show neuronal overexpression of Ube3a isoform 2 causes phenotypes translatable to neurodevelopmental disorders
    corecore