9 research outputs found

    Rewriting results sections in the language of evidence

    Get PDF
    Despite much criticism, black-or-white null-hypothesis significance testing with an arbitrary P-value cutoff still is the standard way to report scientific findings. One obstacle to progress is likely a lack of knowledge about suitable alternatives. Here, we suggest language of evidence that allows for a more nuanced approach to communicate scientific findings as a simple and intuitive alternative to statistical significance testing. We provide examples for rewriting results sections in research papers accordingly. Language of evidence has previously been suggested in medical statistics, and it is consistent with reporting approaches of international research networks, like the Intergovernmental Panel on Climate Change, for example. Instead of re-inventing the wheel, ecology and evolution might benefit from adopting some of the ‘good practices’ that exist in other fields.Rewriting results sections in the language of evidencepublishedVersio

    Rewriting results sections in the language of evidence

    Get PDF
    Despite much criticism, black-or-white null-hypothesis significance testing with an arbitrary P-value cutoff still is the standard way to report scientific findings. One obstacle to progress is likely a lack of knowledge about suitable alternatives. Here, we suggest language of evidence that allows for a more nuanced approach to communicate scientific findings as a simple and intuitive alternative to statistical significance testing. We provide examples for rewriting results sections in research papers accordingly. Language of evidence has previously been suggested in medical statistics, and it is consistent with reporting approaches of international research networks, like the Intergovernmental Panel on Climate Change, for example. Instead of re-inventing the wheel, ecology and evolution might benefit from adopting some of the ‘good practices’ that exist in other fields

    Contributions from terrestrial and marine resources stabilize predator populations in a rapidly changing climate

    Get PDF
    Climate change has different and sometimes divergent effects on terrestrial and marine food webs, and in coastal ecosystems, these effects are tightly interlinked. Responses of opportunistic coastal predators and scavengers to climate change may thus be complex and potentially highly flexible, and can simultaneously serve as indicators of, and have profound impacts on, lower trophic levels. Gaining mechanistic understanding of these responses is therefore important, but often not feasible due to lack of longterm data from marked individuals. Here, we used a Bayesian integrated population model (IPM) to elucidate the effects of arctic warming and concurrent changes in terrestrial and marine resource availability on population dynamics of the opportunistic arctic fox (Vulpes lagopus) in Svalbard. Joint analysis of four types of data (den survey, age-at-harvest, placental scars, mark-recovery) revealed relatively stable population size and age structure over the last 22 yr (1997–2019) despite rapid environmental change linked to climate warming. This was related to the fact that terrestrial resources (reindeer carcasses, geese) became more abundant while the availability of marine resources (seal pups/carrion) decreased, and was driven by divergent trends in different vital rates (e.g., increased pregnancy rate but decreased pup survival). Balanced contributions of survival vs. reproduction and of immigration vs. local demography further stabilized population size. Our study thus sheds light on the mechanisms underlying population dynamics of opportunistic carnivores exploiting terrestrial and marine resources and suggests that exploitation of resources across different ecosystems can buffer predators against climate change. Additionally, it highlights the large potential of IPMs as tools to understand and predict the effects of environmental change on wildlife populations, even when data on marked individuals are sparse. arctic fox; cause-specific mortality; demography; harvest; immigration; integrated population model; marine resources; population dynamics; sea ice; terrestrial resources; transient life table response experimen

    Low impact of first-time spawners on population growth in a brown trout population

    No full text
    For species with individual variation in reproductive success, experience in breeding and the distribution of different breeders is important for population productivity and viability. Human impacts, such as climate change and harvesting, can alter this distribution and thus population dynamics. Here, we investigated the effect of spawning experience on population growth in a population of migratory brown trout Salmo trutta subject to stressors including migration barriers, harvesting, and climate change. We described the population dynamics with a structured integral projection model that differentiates between first-time and repeat spawners. We then took a scenario-based approach to test to which extent spawning experience has a positive effect on the population growth of brown trout by running 3 different model simulations: a baseline scenario with no changes to the reproductive output of the population, a non-selective scenario in which the reproductive output of all spawners was reduced, and a selective scenario where the reproductive output of only first-time spawners was reduced. We found that the reproductive output of repeat spawners is more important than that of first-time spawners for population growth, in line with other studies. Moreover, the contribution of first-time spawners to the population growth through their own survival is more important than their contribution to growth through reproduction. To ensure the continued existence of the study population, survival of first-time spawners and reproductive success of repeat spawners should be prioritised. More generally, including breeding experience adds more mechanistic detail, which ultimately can aid management and conservation efforts. Integral projection model · Iteroparity · Spawning experience · Management · Selective harvesting · Population dynamics · Brown trout · Salmo trutta · Da

    Low impact of first-time spawners on population growth in a brown trout population

    No full text
    For species with individual variation in reproductive success, experience in breeding and the distribution of different breeders is important for population productivity and viability. Human impacts, such as climate change and harvesting, can alter this distribution and thus population dynamics. Here, we investigated the effect of spawning experience on population growth in a population of migratory brown trout Salmo trutta subject to stressors including migration barriers, harvesting, and climate change. We described the population dynamics with a structured integral projection model that differentiates between first-time and repeat spawners. We then took a scenario-based approach to test to which extent spawning experience has a positive effect on the population growth of brown trout by running 3 different model simulations: a baseline scenario with no changes to the reproductive output of the population, a non-selective scenario in which the reproductive output of all spawners was reduced, and a selective scenario where the reproductive output of only first-time spawners was reduced. We found that the reproductive output of repeat spawners is more important than that of first-time spawners for population growth, in line with other studies. Moreover, the contribution of first-time spawners to the population growth through their own survival is more important than their contribution to growth through reproduction. To ensure the continued existence of the study population, survival of first-time spawners and reproductive success of repeat spawners should be prioritised. More generally, including breeding experience adds more mechanistic detail, which ultimately can aid management and conservation efforts. Integral projection model · Iteroparity · Spawning experience · Management · Selective harvesting · Population dynamics · Brown trout · Salmo trutta · Da

    Towards a future without stocking: harvest and river regulation determine long-term population viability of migratory salmonids

    Get PDF
    Freshwater species are particularly vulnerable to emerging threats linked to climate change because they are often already heavily impacted by habitat destruction, pollution, and exploitation. For many harvested populations of freshwater fish, these combined impacts have been mitigated for decades through stocking with captive-bred individuals. However, stocking may lead to loss of genetic variation, which may be crucial for adaptation under climate change. Exploration of sustainable alternatives is therefore paramount. We used a female-based integral projection model (IPM) to assess the consequences of terminating a long-term stocking programme for a population of landlocked, migratory brown trout Salmo trutta, and to evaluate relative effectiveness of alternative management strategies involving harvest regulations and river habitat improvement. The IPM classified individuals by body size, life history stage, and location relative to a hydropower dam, and was parameterised with 50 yr of individual-based data, supplemented with literature values. Model simulations indicated a strong population decline of 22-29% per year without stocking, much of which was attributed to high harvest mortality. Consequently, drastic reductions in fishing pressure were predicted to be necessary to ensure population viability without stocking. Mitigation measures reducing mortality associated with the hydropower dam or restoring spawning areas could further contribute to population viability when combined with changes in harvest regulations. Our results thus emphasise that large changes in management strategies, such as termination of long-term stocking programmes, require a thorough assessment of potential consequences and alternative mitigation strategies using data and models, or, at the very least, a precautionary approach under consideration of on-going climate change. Migratory salmonid · Salmo trutta · Integral projection model · Harvest · Fishing · Stocking · Dam · Hydropower · Trou

    Size‐ and stage‐dependence in cause‐specific mortality of migratory brown trout

    No full text
    Evidence‐based management of natural populations under strong human influence frequently requires not only estimates of survival but also knowledge about how much mortality is due to anthropogenic vs. natural causes. This is the case particularly when individuals vary in their vulnerability to different causes of mortality due to traits, life history stages, or locations. Here, we estimated harvest and background (other cause) mortality of landlocked migratory salmonids over half a century. In doing so, we quantified among‐individual variation in vulnerability to cause‐specific mortality resulting from differences in body size and spawning location relative to a hydropower dam. We constructed a multistate mark–recapture model to estimate harvest and background mortality hazard rates as functions of a discrete state (spawning location) and an individual time‐varying covariate (body size). We further accounted for among‐year variation in mortality and migratory behaviour and fit the model to a unique 50‐year time series of mark–recapture–recovery data on brown trout (Salmo trutta) in Norway. Harvest mortality was highest for intermediate‐sized trout, and outweighed background mortality for most of the observed size range. Background mortality decreased with body size for trout spawning above the dam and increased for those spawning below. All vital rates varied substantially over time, but a trend was evident only in estimates of fishers' reporting rate, which decreased from over 50% to less than 10% throughout the study period. We highlight the importance of body size for cause‐specific mortality and demonstrate how this can be estimated using a novel hazard rate parameterization for mark–recapture models. Our approach allows estimating effects of individual traits and environment on cause‐specific mortality without confounding, and provides an intuitive way to estimate temporal patterns within and correlation among different mortality sources

    Connecting the data landscape of long‐term ecological studies: The SPI‐Birds data hub

    No full text
    The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long‐term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad‐scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long‐term studies of birds, we have created the SPI‐Birds Network and Database (www.spibirds.org)—a large‐scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI‐Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI‐Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community‐derived data and meta‐data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta‐data language). The encouraging community involvement stems from SPI‐Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI‐Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community‐specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much‐needed large‐scale ecological data integration

    Connecting the data landscape of long‐term ecological studies: The SPI‐Birds data hub

    No full text
    The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long‐term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad‐scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long‐term studies of birds, we have created the SPI‐Birds Network and Database (www.spibirds.org)—a large‐scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI‐Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI‐Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community‐derived data and meta‐data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta‐data language). The encouraging community involvement stems from SPI‐Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI‐Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community‐specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much‐needed large‐scale ecological data integration
    corecore