157 research outputs found

    The defect in the AT-like hamster cell mutants is complemented by mouse chromosome 9 but not by any of the human chromosomes

    Get PDF
    X-ray-sensitive Chinese hamster V79 cells mutants, V-C4, V-E5 and V-G8, show an abnormal response to X-ray-induced DNA damage. Like ataxia telangiectasia (AT) cells, they display increased cell killing, chromosomal instability and a diminished inhibition of DNA synthesis following ionizing radiation. To localize the defective hamster gene (XRCC8) on the human genome, human chromosomes were introduced into the AT-like hamster mutants, by microcell mediated chromosome transfer. Although, none of the human chromosomes corrected the defect in these mutants, the defect was corrected by a single mouse chromosome, derived from the A9 microcell donor cell line. In four independent X-ray-resistant microcell hybrid clones of V-E5, the presence of the mouse chromosome was determined by fluorescent in situ hybridization, using a mouse cot-1 probe. By PCR analysis with primers specific for different mouse chromosomes and Southern blot analysis with the mouse Ldlr probe, the mouse chromosome 9, was identified in all four X-ray-resistant hybrid clones. Segregation of the mouse chromosome 9 from these hamster-mouse microcell hybrids led to the loss of the regained X-ray-resistance, confirming that mouse chromosome 9 is responsible for complementation of the defect in V-E5 cells. The assignment of the mouse homolog of the ATM gene to mouse chromosome 9, and the presence of this mouse chromosome only in the radioresistant hamster cell hybrids suggest that the hamster AT-like mutants are homologous to AT, although they are not complemented by human chromosome 11

    Clonal hematopoiesis associated with epigenetic aging and clinical outcomes

    Get PDF
    Clonal hematopoiesis of indeterminate potential (CHIP) is a common precursor state for blood cancers that most frequently occurs due to mutations in the DNA-methylation modifying enzymes DNMT3A or TET2. We used DNA-methylation array and whole-genome sequencing data from four cohorts together comprising 5522 persons to study the association between CHIP, epigenetic clocks, and health outcomes. CHIP was strongly associated with epigenetic age acceleration, defined as the residual after regressing epigenetic clock age on chronological age, in several clocks, ranging from 1.31 years (GrimAge, p < 8.6 × 10−7) to 3.08 years (EEAA, p < 3.7 × 10−18). Mutations in most CHIP genes except DNA-damage response genes were associated with increases in several measures of age acceleration. CHIP carriers with mutations in multiple genes had the largest increases in age acceleration and decrease in estimated telomere length. Finally, we found that ~40% of CHIP carriers had acceleration >0 in both Hannum and GrimAge (referred to as AgeAccelHG+). This group was at high risk of all-cause mortality (hazard ratio 2.90, p < 4.1 × 10−8) and coronary heart disease (CHD) (hazard ratio 3.24, p < 9.3 × 10−6) compared to those who were CHIP−/AgeAccelHG−. In contrast, the other ~60% of CHIP carriers who were AgeAccelHG− were not at increased risk of these outcomes. In summary, CHIP is strongly linked to age acceleration in multiple clocks, and the combination of CHIP and epigenetic aging may be used to identify a population at high risk for adverse outcomes and who may be a target for clinical interventions

    Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential

    Get PDF
    Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD

    Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Get PDF
    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems

    Letter to the editor

    No full text

    Frequencies of X-ray induced chromosome aberrations in lymphocytes of xeroderma pigmentosum and Fanconi anemia patients estimated by Giemsa and fluorescence in situ hybridization staining techniques

    No full text
    Blood lymphocytes from xeroderma pigmentosum (XP) and Fanconi anemia (FA) patients were assessed for their sensitivity to ionizing radiation by estimating the frequency of X-ray (1 and 2 Gy)-induced chromosome aberrations (CA). The frequencies of aberrations in the whole genome were estimated in Giemsa-stained preparations of lymphocytes irradiated at G0 or G2 stages. The frequencies of translocations and dicentrics involving chromosomes 1 and 3 as well as the X-chromosome were determined in slides stained by fluorescence in situ hybridization (FISH) technique. An increase in all types of CA was observed in XP and FA lymphocytes irradiated at G0 when compared to controls. The frequency of dicentrics and rings was 6 to 27% higher (at 1 and 2 Gy) in XP lymphocytes and 37% higher (at 2 Gy) in FA lymphocytes than in controls, while chromosome deletions were higher in irradiated (30% in 1 Gy and 72% in 2 Gy) than in control XP lymphocytes and 28 to 102% higher in FA lymphocytes. In G2-irradiated lymphocytes the frequency of CA was 24 to 55% higher in XP lymphocytes than in controls. In most cases the translocation frequencies were higher than the frequencies of dicentrics (21/19)
    • …
    corecore