434 research outputs found

    DRASTIC—INSIGHTS:querying information in a plant gene expression database

    Get PDF
    DRASTIC––Database Resource for the Analysis of Signal Transduction In Cells (http://www.drastic.org.uk/) has been created as a first step towards a data-based approach for constructing signal transduction pathways. DRASTIC is a relational database of plant expressed sequence tags and genes up- or down-regulated in response to various pathogens, chemical exposure or other treatments such as drought, salt and low temperature. More than 17700 records have been obtained from 306 treatments affecting 73 plant species from 512 peer-reviewed publications with most emphasis being placed on data from Arabidopsis thaliana. DRASTIC has been developed by the Scottish Crop Research Institute and the Abertay University and allows rapid identification of plant genes that are up- or down-regulated by multiple treatments and those that are regulated by a very limited (or perhaps a single) treatment. The INSIGHTS (INference of cell SIGnaling HypoTheseS) suite of web-based tools allows intelligent data mining and extraction of information from the DRASTIC database. Potential response pathways can be visualized and comparisons made between gene expression patterns in response to various treatments. The knowledge gained informs plant signalling pathways and systems biology investigations

    Irreducible decomposition of Gaussian distributions and the spectrum of black-body radiation

    Get PDF
    It is shown that the energy of a mode of a classical chaotic field, following the continuous exponential distribution as a classical random variable, can be uniquely decomposed into a sum of its fractional part and of its integer part. The integer part is a discrete random variable (we call it Planck variable) whose distribution is just the Bose distribution yielding the Planck law of black-body radiation. The fractional part is the dark part (we call is dark variable) with a continuous distribution, which is, of course, not observed in the experiments. It is proved that the Bose distribution is infinitely divisible, and the irreducible decomposition of it is given. The Planck variable can be decomposed into an infinite sum of independent binary random variables representing the binary photons (more accurately photo-molecules or photo-multiplets) of energies 2^s*h*nu with s=0,1,2... . These binary photons follow the Fermi statistics. Consequently, the black-body radiation can be viewed as a mixture of statistically and thermodynamically independent fermion gases consisting of binary photons. The binary photons give a natural tool for the dyadic expansion of arbitrary (but not coherent) ordinary photon excitations. It is shown that the binary photons have wave-particle fluctuations of fermions. These fluctuations combine to give the wave-particle fluctuations of the original bosonic photons expressed by the Einstein fluctuation formula.Comment: 29 page

    Magnetometer-only attitude and rate determination for a gyro-less spacecraft

    Get PDF
    Attitude determination algorithms that requires only the earth's magnetic field will be useful for contingency conditions. One way to determine attitude is to use the time derivative of the magnetic field as the second vector in the attitude determination process. When no gyros are available, however, attitude determination becomes difficult because the rates must be propagated via integration of Euler's equation, which in turn requires knowledge of the initial rates. The spacecraft state to be determined must then include not only the attitude but also rates. This paper describes a magnetometer-only attitude determination scheme with no a priori knowledge of the spacecraft state, which uses a deterministic algorithm to initialize an extended Kalman filter. The deterministic algorithm uses Euler's equation to relate the time derivatives of the magnetic field in the reference and body frames and solves the resultant transcendental equations for the coarse attitude and rates. An important feature of the filter is that its state vector also includes corrections to the propagated rates, thus enabling it to generate highly accurate solutions. The method was tested using in-flight data from the Solar, Anomalous, and Magnetospheric Particles Explorer (SAMPEX), a Small Explorer spacecraft. SAMPEX data using several eclipse periods were used to simulate conditions that may exist during the failure of the on-board digital sun sensor. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude (within even nominal mission requirements) and 0.01 degree per second (deg/sec) in the rates

    Advantages of estimating rate corrections during dynamic propagation of spacecraft rates: Applications to real-time attitude determination of SAMPEX

    Get PDF
    This paper describes real-time attitude determination results for the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), a gyroless spacecraft, using a Kalman filter/Euler equation approach denoted the real-time sequential filter (RTSF). The RTSF is an extended Kalman filter whose state vector includes the attitude quaternion and corrections to the rates, which are modeled as Markov processes with small time constants. The rate corrections impart a significant robustness to the RTSF against errors in modeling the environmental and control torques, as well as errors in the initial attitude and rates, while maintaining a small state vector. SAMPLEX flight data from various mission phases are used to demonstrate the robustness of the RTSF against a priori attitude and rate errors of up to 90 deg and 0.5 deg/sec, respectively, as well as a sensitivity of 0.0003 deg/sec in estimating rate corrections in torque computations. In contrast, it is shown that the RTSF attitude estimates without the rate corrections can degrade rapidly. RTSF advantages over single-frame attitude determination algorithms are also demonstrated through (1) substantial improvements in attitude solutions during sun-magnetic field coalignment and (2) magnetic-field-only attitude and rate estimation during the spacecraft's sun-acquisition mode. A robust magnetometer-only attitude-and-rate determination method is also developed to provide for the contingency when both sun data as well as a priori knowledge of the spacecraft state are unavailable. This method includes a deterministic algorithm used to initialize the RTSF with coarse estimates of the spacecraft attitude and rates. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude and 0.01 deg/sec in the rates and convergence times as little as 400 sec

    Engineering tyrosine-based electron flow pathways in proteins: The case of aplysia myoglobin

    Get PDF
    Tyrosine residues can act as redox cofactors that provide an electron transfer ("hole-hopping") route that enhances the rate of ferryl heme iron reduction by externally added reductants, for example, ascorbate. Aplysia fasciata myoglobin, having no naturally occurring tyrosines but 15 phenylalanines that can be selectively mutated to tyrosine residues, provides an ideal protein with which to study such through-protein electron transfer pathways and ways to manipulate them. Two surface exposed phenylalanines that are close to the heme have been mutated to tyrosines (F42Y, F98Y). In both of these, the rate of ferryl heme reduction increased by up to 3 orders of magnitude. This result cannot be explained in terms of distance or redox potential change between donor and acceptor but indicates that tyrosines, by virtue of their ability to form radicals, act as redox cofactors in a new pathway. The mechanism is discussed in terms of the Marcus theory and the specific protonation/deprotonation states of the oxoferryl iron and tyrosine. Tyrosine radicals have been observed and quantified by EPR spectroscopy in both mutants, consistent with the proposed mechanism. The location of each radical is unambiguous and allows us to validate theoretical methods that assign radical location on the basis of EPR hyperfine structure. Mutation to tyrosine decreases the lipid peroxidase activity of this myoglobin in the presence of low concentrations of reductant, and the possibility of decreasing the intrinsic toxicity of hemoglobin by introduction of these pathways is discussed. © 2012 American Chemical Society

    Einstein's fluctuation formula. A historical overview

    Get PDF
    A historical overview is given on the basic results which appeared by the year 1926 concerning Einstein's fluctuation formula of black-body radiation, in the context of light-quanta and wave-particle duality. On the basis of the original publications (from Planck's derivation of the black-body spectrum and Einstein's introduction of the photons up to the results of Born, Heisenberg and Jordan on the quantization of a continuum) a comparative study is presented on the first line of thoughts that led to the concept of quanta. The nature of the particle-like fluctuations and the wave-like fluctuations are analysed by using several approaches. With the help of the classical probability theory, it is shown that the infinite divisibility of the Bose distribution leads to the new concept of classical poissonian photo-multiplets or to the binary photo-multiplets of fermionic character. As an application, Einstein's fluctuation formula is derived as a sum of fermion type fluctuations of the binary photo-multiplets.Comment: 34 page

    Wigner's Dynamical Transition State Theory in Phase Space: Classical and Quantum

    Full text link
    A quantum version of transition state theory based on a quantum normal form (QNF) expansion about a saddle-centre-...-centre equilibrium point is presented. A general algorithm is provided which allows one to explictly compute QNF to any desired order. This leads to an efficient procedure to compute quantum reaction rates and the associated Gamov-Siegert resonances. In the classical limit the QNF reduces to the classical normal form which leads to the recently developed phase space realisation of Wigner's transition state theory. It is shown that the phase space structures that govern the classical reaction d ynamicsform a skeleton for the quantum scattering and resonance wavefunctions which can also be computed from the QNF. Several examples are worked out explicitly to illustrate the efficiency of the procedure presented.Comment: 132 pages, 31 figures, corrected version, Nonlinearity, 21 (2008) R1-R11

    Quasi-normal frequencies: Key analytic results

    Full text link
    The study of exact quasi-normal modes [QNMs], and their associated quasi-normal frequencies [QNFs], has had a long and convoluted history - replete with many rediscoveries of previously known results. In this article we shall collect and survey a number of known analytic results, and develop several new analytic results - specifically we shall provide several new QNF results and estimates, in a form amenable for comparison with the extant literature. Apart from their intrinsic interest, these exact and approximate results serve as a backdrop and a consistency check on ongoing efforts to find general model-independent estimates for QNFs, and general model-independent bounds on transmission probabilities. Our calculations also provide yet another physics application of the Lambert W function. These ideas have relevance to fields as diverse as black hole physics, (where they are related to the damped oscillations of astrophysical black holes, to greybody factors for the Hawking radiation, and to more speculative state-counting models for the Bekenstein entropy), to quantum field theory (where they are related to Casimir energies in unbounded systems), through to condensed matter physics, (where one may literally be interested in an electron tunelling through a physical barrier).Comment: V1: 29 pages; V2: Reformatted, 31 pages. Title changed to reflect major additions and revisions. Now describes exact QNFs for the double-delta potential in terms of the Lambert W function. V3: Minor edits for clarity. Four references added. No physics changes. Still 31 page

    Vertebral Bomb Radiocarbon Suggests Extreme Longevity in White Sharks

    Get PDF
    Conservation and management efforts for white sharks (Carcharodon carcharias) remain hampered by a lack of basic demographic information including age and growth rates. Sharks are typically aged by counting growth bands sequentially deposited in their vertebrae, but the assumption of annual deposition of these band pairs requires testing. We compared radiocarbon (Δ14C) values in vertebrae from four female and four male white sharks from the northwestern Atlantic Ocean (NWA) with reference chronologies documenting the marine uptake of 14C produced by atmospheric testing of thermonuclear devices to generate the first radiocarbon age estimates for adult white sharks. Age estimates were up to 40 years old for the largest female (fork length [FL]: 526 cm) and 73 years old for the largest male (FL: 493 cm). Our results dramatically extend the maximum age and longevity of white sharks compared to earlier studies, hint at possible sexual dimorphism in growth rates, and raise concerns that white shark populations are considerably more sensitive to human-induced mortality than previously thought
    corecore