11 research outputs found

    Regional differences in prostaglandin Eâ‚‚ metabolism in human colorectal cancer liver metastases

    Get PDF
    Background: Prostaglandin (PG) E₂ plays a critical role in colorectal cancer (CRC) progression, including epithelial-mesenchymal transition (EMT). Activity of the rate-limiting enzyme for PGE₂ catabolism (15-hydroxyprostaglandin dehydrogenase [15-PGDH]) is dependent on availability of NAD+. We tested the hypothesis that there is intra-tumoral variability in PGE₂ content, as well as in levels and activity of 15-PGDH, in human CRC liver metastases (CRCLM). To understand possible underlying mechanisms, we investigated the relationship between hypoxia, 15-PGDH and PGE₂ in human CRC cells in vitro. Methods: Tissue from the periphery and centre of 20 human CRCLM was analysed for PGE₂ levels, 15-PGDH and cyclooxygenase (COX)-2 expression, 15-PGDH activity, and NAD+/NADH levels. EMT of LIM1863 human CRC cells was induced by transforming growth factor (TGF) β. Results: PGE₂ levels were significantly higher in the centre of CRCLM compared with peripheral tissue (P = 0.04). There were increased levels of 15-PGDH protein in the centre of CRCLM associated with reduced 15-PGDH activity and low NAD+/NADH levels. There was no significant heterogeneity in COX-2 protein expression. NAD+ availability controlled 15-PGDH activity in human CRC cells in vitro. Hypoxia induced 15-PGDH expression in human CRC cells and promoted EMT, in a similar manner to PGE₂. Combined 15-PGDH expression and loss of membranous E-cadherin (EMT biomarker) were present in the centre of human CRCLM in vivo.Conclusions: There is significant intra-tumoral heterogeneity in PGE₂ content, 15-PGDH activity and NAD+ availability in human CRCLM. Tumour micro-environment (including hypoxia)-driven differences in PGE₂ metabolism should be targeted for novel treatment of advanced CRC

    The PTEN Phosphatase Controls Intestinal Epithelial Cell Polarity and Barrier Function: Role in Colorectal Cancer Progression

    Get PDF
    The PTEN phosphatase acts on phosphatidylinositol 3,4,5-triphosphates resulting from phosphatidylinositol 3-kinase (PI3K) activation. PTEN expression has been shown to be decreased in colorectal cancer. Little is known however as to the specific cellular role of PTEN in human intestinal epithelial cells. The aim of this study was to investigate the role of PTEN in human colorectal cancer cells.Caco-2/15, HCT116 and CT26 cells were infected with recombinant lentiviruses expressing a shRNA specifically designed to knock-down PTEN. The impact of PTEN downregulation was analyzed on cell polarization and differentiation, intercellular junction integrity (expression of cell-cell adhesion proteins, barrier function), migration (wound assay), invasion (matrigel-coated transwells) and on tumor and metastasis formation in mice. Electron microscopy analysis showed that lentiviral infection of PTEN shRNA significantly inhibited Caco-2/15 cell polarization, functional differentiation and brush border development. A strong reduction in claudin 1, 3, 4 and 8 was also observed as well as a decrease in transepithelial resistance. Loss of PTEN expression increased the spreading, migration and invasion capacities of colorectal cancer cells in vitro. PTEN downregulation also increased tumor size following subcutaneous injection of colorectal cancer cells in nude mice. Finally, loss of PTEN expression in HCT116 and CT26, but not in Caco-2/15, led to an increase in their metastatic potential following tail-vein injections in mice.Altogether, these results indicate that PTEN controls cellular polarity, establishment of cell-cell junctions, paracellular permeability, migration and tumorigenic/metastatic potential of human colorectal cancer cells

    Chlorhexidine versus povidone–iodine skin antisepsis before upper limb surgery (CIPHUR) : an international multicentre prospective cohort study

    Get PDF
    Introduction Surgical site infection (SSI) is the most common and costly complication of surgery. International guidelines recommend topical alcoholic chlorhexidine (CHX) before surgery. However, upper limb surgeons continue to use other antiseptics, citing a lack of applicable evidence, and concerns related to open wounds and tourniquets. This study aimed to evaluate the safety and effectiveness of different topical antiseptics before upper limb surgery. Methods This international multicentre prospective cohort study recruited consecutive adults and children who underwent surgery distal to the shoulder joint. The intervention was use of CHX or povidone–iodine (PVI) antiseptics in either aqueous or alcoholic form. The primary outcome was SSI within 90 days. Mixed-effects time-to-event models were used to estimate the risk (hazard ratio (HR)) of SSI for patients undergoing elective and emergency upper limb surgery. Results A total of 2454 patients were included. The overall risk of SSI was 3.5 per cent. For elective upper limb surgery (1018 patients), alcoholic CHX appeared to be the most effective antiseptic, reducing the risk of SSI by 70 per cent (adjusted HR 0.30, 95 per cent c.i. 0.11 to 0.84), when compared with aqueous PVI. Concerning emergency upper limb surgery (1436 patients), aqueous PVI appeared to be the least effective antiseptic for preventing SSI; however, there was uncertainty in the estimates. No adverse events were reported. Conclusion The findings align with the global evidence base and international guidance, suggesting that alcoholic CHX should be used for skin antisepsis before clean (elective upper limb) surgery. For emergency (contaminated or dirty) upper limb surgery, the findings of this study were unclear and contradict the available evidence, concluding that further research is necessary

    Role of neuroinflammation in neurodegeneration: new insights

    No full text
    Previously, the contribution of peripheral infection to cognitive decline was largely overlooked however, the past 15 years have established a key role for infectious pathogens in the progression of age-related neurodegeneration. It is now accepted that the immune privilege of the brain is not absolute, and that cells of the central nervous system are sensitive to both the inflammatory events occurring in the periphery and to the infiltration of peripheral immune cells. This is particularly relevant for the progression of Alzheimer’s disease, in which it has been demonstrated that patients are more vulnerable to infection-related cognitive changes. This can occur from typical infectious challenges such as respiratory tract infections, although a number of specific viral, bacterial, and fungal pathogens have also been associated with the development of the disease. To date, it is not clear whether these microorganisms are directly related to Alzheimer’s disease progression or if they are opportune pathogens that easily colonize those with dementia and exacerbate the ongoing inflammation observed in these individuals. This review will discuss the impact of each of these challenges, and examine the changes known to occur with age in the peripheral immune system, which may contribute to the age-related vulnerability to infection-induced cognitive decline
    corecore