43 research outputs found

    Development and application of a novel cervical lymph collection method to assess lymphatic transport in rats

    Get PDF
    Background: Fluids, solutes and immune cells have been demonstrated to drain from the brain and surrounding structures to the cervical lymph vessels and nodes in the neck via meningeal lymphatics, nasal lymphatics and/or lymphatic vessels associated with cranial nerves. A method to cannulate the efferent cervical lymph duct for continuous cervical lymph fluid collection in rodents has not been described previously and would assist in evaluating the transport of molecules and immune cells from the head and brain via the lymphatics, as well as changes in lymphatic transport and lymph composition with different physiological challenges or diseases.Aim: To develop a novel method to cannulate and continuously collect lymph fluid from the cervical lymph duct in rats and to analyze the protein, lipid and immune cell composition of the collected cervical lymph fluid.Methods: Male Sprague-Dawley rats were cannulated at the carotid artery with or without cannulation or ligation at the cervical lymph duct. Samples of blood, whole lymph and isolated lipoprotein fractions of lymph were collected and analyzed for lipid and protein composition using commercial kits. Whole lymph samples were centrifuged and isolated pellets were stained and processed for flow cytometry analysis of CD3+, CD4+, CD8a+, CD45R+ (B220) and viable cell populations.Results: Flow rate, phospholipid, triglyceride, cholesterol ester, free cholesterol and protein concentrations in cervical lymph were 0.094 ± 0.014 mL/h, 0.34 ± 0.10, 0.30 ± 0.04, 0.07 ± 0.02, 0.02 ± 0.01 and 16.78 ± 2.06 mg/mL, respectively. Protein was mostly contained within the non-lipoprotein fraction but all lipoprotein types were also present. Flow cytometry analysis of cervical lymph showed that 67.1 ± 7.4% of cells were CD3+/CD4+ T lymphocytes, 5.8 ± 1.6% of cells were CD3+/CD8+ T lymphocytes, and 10.8 ± 4.6% of cells were CD3-/CD45R+ B lymphocytes. The remaining 16.3 ± 4.6% cells were CD3-/CD45- and identified as non-lymphocytes.Conclusion: Our novel cervical lymph cannulation method enables quantitative analysis of the lymphatic transport of immune cells and molecules in the cervical lymph of rats for the first time. This valuable tool will enable more detailed quantitative analysis of changes to cervical lymph composition and transport in health and disease, and could be a valuable resource for discovery of biomarkers or therapeutic targets in future studies

    The mechanisms of pharmacokinetic food-drug interactions: A perspective from the UNGAP group

    Get PDF
    The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspective

    Targeting immune cells within lymph nodes

    No full text

    Editorial: Modulating Vascular Lymphatic Growth in Disease: Current and Potential Pharmacological Approaches for Prevention and Treatment.

    Get PDF
    The lymphatic system is part of the circulatory system and it is indispensable for life. In physiological conditions, the main functions assigned to the lymphatic system are the maintenance of the interstitial fluid homeostasis, immune surveillance and the absorption of dietary fat in the intestine (Alitalo, 2011). However, morphological or functional changes in lymphatic vessels can contribute to disorders such as lymphedema, tumor metastasis, inflammation and other pathological conditions (Oliver et al., 2020). Therefore, there is an urgent need to further understand the mechanisms driving lymphatic dysfunction in these conditions and to develop novel lymph-targeted therapies. In this Research Topic, we present a collection of research articles that provide new insights into obesity-induced lymphatic dysfunction and tumor-draining lymph node reconstruction; and review articles that highlight and discuss the latest pharmacological approaches to treat lymphedema and mechanisms to target obesity and metabolic diseases through modulating lymphatic contraction.his study was supported by the Beatriz Galindo Programme from the Spanish Ministry of Education and Professional Formation, Fundación Científica AECC (LABAE211691GARC) and the Instituto de Salud Carlos III (ISCIII) through the project “PI21/00653” and co-funded by the European Union (MG-C)

    The Lymph Lipid Precursor Pool Is a Key Determinant of Intestinal Lymphatic Drug Transport

    No full text

    Diet-induced gut dysbiosis and inflammation: Key drivers of obesity-driven NASH

    No full text
    Summary: Sucrose, the primary circulating sugar in plants, contains equal amounts of fructose and glucose. The latter is the predominant circulating sugar in animals and thus the primary fuel source for various tissue and cell types in the body. Chronic excessive energy intake has, however, emerged as a major driver of obesity and associated pathologies including nonalcoholic fatty liver diseases (NAFLD) and the more severe nonalcoholic steatohepatitis (NASH). Consumption of a high-caloric, western-style diet induces gut dysbiosis and inflammation resulting in leaky gut. Translocation of gut-derived bacterial content promotes hepatic inflammation and ER stress, and when either or both of these are combined with steatosis, it can cause NASH. Here, we review the metabolic links between diet-induced changes in the gut and NASH. Furthermore, therapeutic interventions for the treatment of obesity and liver metabolic diseases are also discussed with a focus on restoring the gut-liver axis

    The Potential for Drug Supersaturation during Intestinal Processing of Lipid-Based Formulations May Be Enhanced for Basic Drugs

    No full text
    Co-administration of poorly water-soluble drugs (PWSD) with dietary or formulation lipids stimulates the formation of lipid colloidal phases such as vesicular and micellar species, and significantly expands the drug solubilization capacity of the small intestine. The mechanism of drug absorption from the solubilizing phases, however, has not been fully elucidated. Recently, we observed that drug supersaturation may be triggered during endogenous processing of lipid colloidal phases containing medium-chain lipid digestion products and that this may represent a mechanism to reverse the reduction in thermodynamic activity inherent in drug solubilization and thereby enhance absorption. The current studies expand these preliminary findings and explore the supersaturation tendency of five model PWSD during endogenous processing of intestinal colloidal phases containing long-chain lipid digestion products. Bile–lipid concentration ratios progressively increase during colloid transit through the gastrointestinal tract due to biliary dispersion of lipid digestion products and lipid absorption. The supersaturation potential was therefore evaluated under conditions of increasing bile and decreasing lipid concentrations and was found to be greater for the basic drugs cinnarizine (CIN) and halofantrine (HF), than the neutral drugs fenofibrate (FF) and danazol (DAN), and acidic drug meclofenamic acid (MFA). Assessment of intestinal absorptive flux using rat jejunal perfusion experiments subsequently showed that the absorption enhancement afforded by bile dilution of lipid colloidal phases was greater for CIN than DAN. The results confirm that bile plays a significantly greater role in the absorption of CIN (a weak base) from long-chain intestinal colloids when compared to DAN (an uncharged molecule) and that the difference reflects a greater propensity for supersaturation as intestinal colloids are dispersed and diluted by bile. The data suggest that coadministered digestible lipids may be particularly suited to enhance the absorption of poorly water-soluble weak bases
    corecore