38 research outputs found

    OCT4 silencing triggers its epigenetic repression and impairs the osteogenic and adipogenic differentiation of mesenchymal stromal cells

    Get PDF
    Mechanisms mediating mesenchymal stromal/stem cells’ (MSCs) multipotency are unclear. Although the expression of the pluripotency factor OCT4 has been detected in MSCs, whether it has a functional role in adult stem cells is still controversial. We hypothesized that a physiological expression level of OCT4 is important to regulate MSCs’ multipotency and trigger differentiation in response to environmental signals. Here, we specifically suppressed OCT4 in MSCs by using siRNA technology before directed differentiation. OCT4 expression levels were reduced by 82% in siOCT4-MSCs, compared with controls. Interestingly, siOCT4-MSCs also presented a hypermethylated OCT4 promoter. OCT4 silencing significantly impaired the ability of MSCs to differentiate into osteoblasts. Histologic and macroscopic analysis showed a lower degree of mineralization in siOCT4-MSCs than in controls. Moreover, OCT4 silencing prevented the up-regulation of osteoblast lineage-associated genes during differentiation. Similarly, OCT4 silencing resulted in decreased MSC differentiation potential towards the adipogenic lineage. The accumulation of lipids was reduced 3.0-fold in siOCT4-MSCs, compared with controls. The up-regulation of genes engaged in the early stages of adipogenesis was also suppressed in siOCT4-MSCs. Our findings provide evidence of a functional role for OCT4 in MSCs and indicate that a basal expression of this transcription factor is essential for their multipotent capacity.Fil: Malvicini, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Santa Cruz, Diego Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Pacienza, Natalia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Yannarelli, Gustavo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentin

    Lentivector Transduction Improves Outcomes Over Transplantation of Human HSCs Alone in NOD/SCID/Fabry Mice

    Get PDF
    Fabry disease is a lysosomal storage disorder caused by a deficiency of a-galactosidase A (a-gal A) activity that results in progressive globotriaosylceramide (Gb(3)) deposition. We created a fully congenic nonobese diabetic (NOD)/severe combined immunodeficiency (SCID)/Fabry murine line to facilitate the in vivo assessment of human cell-directed therapies for Fabry disease. This pure line was generated after 11 generations of backcrosses and was found, as expected, to have a reduced immune compartment and background a-gal A activity. Next, we transplanted normal human CD34(+) cells transduced with a control (lentiviral vector-enhanced green fluorescent protein (LV-eGFP)) or a therapeutic bicistronic LV (LV-a-gal A/internal ribosome entry site (IRES)/hCD25). While both experimental groups showed similar engraftment levels, only the therapeutic group displayed a significant increase in plasma a-gal A activity. Gb(3) quantification at 12 weeks revealed metabolic correction in the spleen, lung, and liver for both groups. Importantly, only in the therapeutically-transduced cohort was a significant Gb(3) reduction found in the heart and kidney, key target organs for the amelioration of Fabry disease in humans.Fil: Pacienza, Natalia Alejandra. University Health Network; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yoshimitsu, Makoto. Kagoshima University; Japón. University Health Network; CanadáFil: Mizue, Nobuo. University Health Network; CanadáFil: Au, Bryan C. Y.. University Health Network; CanadáFil: Wang, James C. M.. University Health Network; CanadáFil: Fan, Xin. University Health Network; CanadáFil: Takenaka, Toshihiro. Kagoshima University; JapónFil: Medin, Jeffrey A. University Health Network; Canadá. University of Toronto; Canad

    In Vitro Macrophage Assay Predicts the In Vivo Anti-inflammatory Potential of Exosomes from Human Mesenchymal Stromal Cells

    Get PDF
    Extracellular vesicles (EVs) play key roles in cell biology and may provide new clinical diagnostics and therapies. However, it has proven difficult to develop protocols for their purification and characterization. One of the major barriers in the field has been a lack of convenient assays for their bioactivity. Developing assays has not been a trivial matter, because of the heterogeneity of EVs, the multiple activities they demonstrate, and the uncertainty about their modes of action. Therefore, it is likely that multiple assays for their activities are needed. One important assay will be for the anti-inflammatory activity observed in mice after administration of the small EVs commonly referred to as exosomes. We developed an assay for the anti-inflammatory activity of exosomes with a line of mouse macrophages. The assay makes it possible to rank different preparations of exosomes by their anti-inflammatory activity, and their ranking predicts their efficacy in suppressing LPS-stimulated inflammation in mice. The assay is convenient for comparing multiple samples and, therefore, should be useful in developing protocols for the purification and characterization of anti-inflammatory exosomes.Fil: Pacienza, Natalia Alejandra. Texas A&M University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Lee, Ryang Hwa. Texas A&M University; Estados UnidosFil: Bae, Eun-Hye. Texas A&M University; Estados UnidosFil: Kim, Dong-ki. Texas A&M University; Estados UnidosFil: Liu, Qisong. Texas A&M University; Estados UnidosFil: Prockop, Darwin J.. Texas A&M University; Estados UnidosFil: Yannarelli, Gustavo Gabriel. Texas A&M University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentin

    Depot subcutaneous injection with chalcone CH8-loaded Poly (Lactic-Co-Glycilic Acid) microspheres as a single-dose treatment of cutaneous leishmaniasis

    Get PDF
    International audienceConventional chemotherapy of cutaneous leishmaniasis (CL) is based on multiple parenteral or intralesional injections with systemically toxic drugs. Aiming at a single-dose localized therapy, biodegradable PLGA (poly-(lactide-co-glycolide) microparticles loaded with 7.8% of an antileishmanial nitrochalcone named CH8 (CH8/PLGA) were constructed to promote sustained subcutaneous release. In vitro, murine macrophages avidly phagocytosed CH8/PLGA smaller than 6μm without triggering oxidative mechanisms. Upon 48-hour incubation, both CH8 and CH8/PLGA were 40 times more toxic to intracellular Leishmania amazonensis than to macrophages. In vivo, BALB/c were given one or three subcutaneous injections in the infected ear with 1.2mg/kg of CH8 in free or CH8/PLGA forms, while controls received three CH8-equivalent doses of naked PLGA microparticles or Glucantime. While a single injection with CH8/PLGA reduced the parasite loads by 91%, triple injections with free CH8 or CH8/PLGA caused 80% and 97% reduction, respectively, in relation to saline controls. Glucantime treatment was the least effective (only 36% reduction) and the most toxic as seen by elevated alanine aminotransferase serum levels. Together, those findings show that CH8/PLGA microparticles can be effectively and safely used for single-dose treatment of CL

    Mesenchymal stem cell therapy facilitates donor lung preservation by reducing oxidative damage during ischemia

    Get PDF
    Lung transplantation is a lifesaving therapy for people living with severe, life-threatening lung disease. The high mortality rate among patients awaiting transplantation is mainly due to the low percentage of lungs that are deemed acceptable for implantation. Thus, the current shortage of lung donors may be significantly reduced by implementing different therapeutic strategies which facilitate both organ preservation and recovery. Here, we studied whether the anti-inflammatory effect of human umbilical cord-derived mesenchymal stem cells (HUCPVCs) increases lung availability by improving organ preservation. We developed a lung preservation rat model that mimics the different stages by which donor organs must undergo before implantation. The therapeutic schema was as follows: cardiac arrest, warm ischemia (2h at room temperature), cold ischemia (1.5h at 4°C, with Perfadex), and normothermic lung perfusion with ventilation (Steen solution, 1h). After 1h of warm ischemia, HUCPVCs (1x106 cells) or vehicle were infused via the pulmonary artery. Physiologic data (pressure-volume curves) were acquired right after the cardiac arrest and at the end of the perfusion. Interestingly, although lung edema did not change among groups, lung compliance dropped a 34% in the HUCPVCs-treated group, while the vehicle group showed a stronger reduction (69%, p<0.0001). Histologic assessment demonstrated less overall inflammation in HUCPVCs-treated lungs. In addition, MPO activity, a neutrophil marker, was reduced by 41% compared with vehicle (p<0.01). MSCs therapy significantly decreased tissue oxidative damage by controlling reactive oxygen species production. Accordingly, catalase and superoxide dismutase enzyme activities remained at baseline levels. In conclusion, these results demonstrate that the anti-inflammatory effect of MSCs protects donor lungs against ischemic injury and postulate MSCs therapy as a novel tool for organ preservation.Fil: Pacienza, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Santa Cruz, Diego Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Malvicini, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Robledo, Oscar. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias; ArgentinaFil: Lemus Larralde, Gastón. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias; ArgentinaFil: Bertolotti, Alejandro Mario. Fundación Favaloro; ArgentinaFil: Marcos, Martín. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias; ArgentinaFil: Yannarelli, Gustavo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentin

    Mesenchymal Stem Cell Therapy Facilitates Donor Lung Preservation by Reducing Oxidative Damage during Ischemia

    Get PDF
    Lung transplantation is a lifesaving therapy for people living with severe, life-threatening lung disease. The high mortality rate among patients awaiting transplantation is mainly due to the low percentage of lungs that are deemed acceptable for implantation. Thus, the current shortage of lung donors may be significantly reduced by implementing different therapeutic strategies which facilitate both organ preservation and recovery. Here, we studied whether the anti-inflammatory effect of human umbilical cord-derived mesenchymal stem cells (HUCPVCs) increases lung availability by improving organ preservation. We developed a lung preservation rat model that mimics the different stages by which donor organs must undergo before implantation. The therapeutic schema was as follows: cardiac arrest, warm ischemia (2 h at room temperature), cold ischemia (1.5 h at 4°C, with Perfadex), and normothermic lung perfusion with ventilation (Steen solution, 1 h). After 1 h of warm ischemia, HUCPVCs (1 × 106 cells) or vehicle was infused via the pulmonary artery. Physiologic data (pressure-volume curves) were acquired right after the cardiac arrest and at the end of the perfusion. Interestingly, although lung edema did not change among groups, lung compliance dropped to 34% in the HUCPVC-treated group, while the vehicle group showed a stronger reduction (69%, p < 0 0001). Histologic assessment demonstrated less overall inflammation in the HUCPVC-treated lungs. In addition, MPO activity, a neutrophil marker, was reduced by 41% compared with vehicle (p < 0 01). MSC therapy significantly decreased tissue oxidative damage by controlling reactive oxygen species production. Accordingly, catalase and superoxide dismutase enzyme activities remained at baseline levels. In conclusion, these results demonstrate that the anti-inflammatory effect of MSCs protects donor lungs against ischemic injury and postulates MSC therapy as a novel tool for organ preservation.Facultad de Ciencias Veterinaria

    Perinatal derivatives: How to best validate their immunomodulatory functions

    Get PDF
    Perinatal tissues, mainly the placenta and umbilical cord, contain a variety of different somatic stem and progenitor cell types, including those of the hematopoietic system, multipotent mesenchymal stromal cells (MSCs), epithelial cells and amnion epithelial cells. Several of these perinatal derivatives (PnDs), as well as their secreted products, have been reported to exert immunomodulatory therapeutic and regenerative functions in a variety of pre-clinical disease models. Following experience with MSCs and their extracellular vesicle (EV) products, successful clinical translation of PnDs will require robust functional assays that are predictive for the relevant therapeutic potency. Using the examples of T cell and monocyte/macrophage assays, we here discuss several assay relevant parameters for assessing the immunomodulatory activities of PnDs. Furthermore, we highlight the need to correlate the in vitro assay results with preclinical or clinical outcomes in order to ensure valid predictions about the in vivo potency of therapeutic PnD cells/products in individual disease settings

    Ion exchange chromatography as a simple and scalable method to isolate biologically active small extracellular vesicles from conditioned media.

    Get PDF
    In the last few years, extracellular vesicles (EVs) have become of great interest due to their potential as biomarkers, drug delivery systems, and, in particular, therapeutic agents. However, there is no consensus on which is the best way to isolate these EVs. The choice of the isolation method depends on the starting material (i.e., conditioned culture media, urine, serum, etc.) and their downstream applications. Even though there are numerous methods to isolate EVs, few are compatible with clinical applications as they are not scalable. In the present work, we set up a protocol to isolate EVs from conditioned media by ion exchange chromatography, a simple, fast, and scalable method, suitable for clinical production. We performed the isolation using an anion exchange resin (Q sepharose) and eluted the EVs using 500 mM NaCl. We characterized the elution profile by measuring protein and lipid concentration, and CD63 by ELISA. Moreover, we immunophenotyped all the eluted fractions, assessed the presence of TSG101, calnexin, and cytochrome C by western blot, analyzed nanoparticle size and distribution by tRPS, and morphology by TEM. Finally, we evaluated the immunomodulatory activity in vitro. We found that most EVs are eluted and concentrated in a single peak fraction, with a mean particle size of <150nm and expression of CD9, CD63, CD81, and TSG101 markers. Moreover, sEVs in fraction 4 exerted an anti-inflammatory activity on LPS-stimulated macrophages. In summary, we set up a chromatographic, scalable, and clinically compatible method to isolate and concentrate small EVs from conditioned media, which preserves the EVs biological activity

    OCT4 expression mediates partial cardiomyocyte reprogramming of mesenchymal stromal cells.

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) are in numerous cell therapy clinical trials, including for injured myocardium. Acquisition of cardiomyocyte characteristics by MSCs may improve cardiac regeneration but the mechanisms regulating this process are unclear. Here, we investigated whether the pluripotency transcription factor OCT4 is involved in the activation of cardiac lineage genetic programs in MSCs. We employed our established co-culture model of MSCs with rat embryonic cardiomyocytes showing co-expression of cardiac markers on MSCs independent of cell fusion. Bone marrow-derived MSCs were isolated from transgenic mice expressing GFP under the control of the cardiac-specific α-myosin heavy chain promoter. After 5 days of co-culture, MSCs expressed cardiac specific genes, including Nkx2.5, atrial natriuretic factor and α-cardiac actin. The frequency of GFP+ cells was 7.6±1.9%, however, these cells retained the stromal cell phenotype, indicating, as expected, only partial differentiation. Global OCT4 expression increased 2.6±0.7-fold in co-cultured MSCs and of interest, 87±5% vs 79±4% of MSCs expressed OCT4 by flow cytometry in controls and after co-culture, respectively. Consistent with the latter observation, the GFP+ cells did not express nuclear OCT4 and showed a significant increase in OCT4 promoter methylation compared with undifferentiated MSCs (92% vs 45%), inferring that OCT4 is regulated by an epigenetic mechanism. We further showed that siRNA silencing of OCT4 in MSCs resulted in a reduced frequency of GFP+ cells in co-culture to less than 1%. Our data infer that OCT4 expression may have a direct effect on partial cardiomyocyte reprogramming of MSCs and suggest a new mechanism(s) associated with MSC multipotency and a requirement for crosstalk with the cardiac microenvironment
    corecore