6 research outputs found

    Neuroprotein Dynamics in the Cerebrospinal Fluid: Intraindividual Concomitant Ventricular and Lumbar Measurements

    No full text
    Objective: The measurement of neuromarker/neuroproteins in the cerebrospinal fluid (CSF) is gaining increased popularity. However, insufficient information is available on the rostrocaudal distribution of neuroproteins in the CSF to guarantee an appropriate interpretation of ventricular versus lumbar concentrations. Methods: In 10 patients treated with both an external ventricular and a lumbar CSF drain, we collected concomitant CSF samples. We measured CSF concentrations of the glial S100B protein, the neuron-specific enolase (Cobas e411®; Roche Diagnostics), the leptomeningeal β-trace protein (BN Pro Spec®; Dade Behring/Siemens), and the blood-derived albumin (Immage; Beckman Coulter). Statistical analysis was performed with a paired Wilcoxon signed ranks test. Results: In patients with a free CSF circulation without any recent neurosurgical procedure, S100B and neuron-specific enolase concentrations did not differ between the ventricular and lumbar CSF while β-trace and albumin levels were significantly higher in the lumbar than in the ventricular CSF (p = 0.008 and p = 0.005). Following posterior fossa tumor surgery, all proteins accumulate in the lumbar CSF. Conclusion: For brain-derived proteins, we could not confirm a rostrocaudal CSF gradient while lepto-meningeal and blood-derived proteins accumulate in the lumbar CSF. We conclude that for the interpretation of protein CSF concentrations, the source of the sample is of crucial importance

    Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer's disease patients and healthy controls

    Get PDF
    Introduction: Synaptic dysfunction and degeneration are central events in Alzheimer's disease (AD) pathophysiology that are thought to occur early in disease progression. Synaptic pathology may be studied by examining protein biomarkers specific for different synaptic elements. We recently showed that the dendritic protein neurogranin (Ng), including the endogenous Ng peptide 48 to 76 (Ng(48-76)), is markedly increased in cerebrospinal fluid (CSF) in AD and that Ng48-76 is the dominant peptide in human brain tissue. The aim of this study was to characterize Ng in plasma and CSF using mass spectrometry and to investigate the performance of plasma Ng as an AD biomarker. Methods: Paired plasma and CSF samples from patients with AD (n = 25) and healthy controls (n = 20) were analyzed in parallel using an immunoassay developed in-house on the Meso Scale Discovery platform and hybrid immunoaffinity-mass spectrometry (HI-MS). A second plasma material from patients with AD (n = 13) and healthy controls (n = 17) was also analyzed with HI-MS. High-resolution mass spectrometry was used for identification of endogenous plasma Ng peptides. Results: Ng in human plasma is present as several endogenous peptides. Of the 16 endogenous Ng peptides identified, seven were unique for plasma and not detectable in CSF. However, Ng(48-76) was not present in plasma. CSF Ng was significantly increased in AD compared with controls (P < 0.0001), whereas the plasma Ng levels were similar between the groups in both studies. Plasma and CSF Ng levels showed no correlation. CSF Ng was stable during storage at -20 degrees C for up to 2 days, and no de novo generation of peptides were detected. Conclusions: For the first time, to our knowledge, we have identified several endogenous Ng peptides in human plasma. In agreement with previous studies, we show that CSF Ng is significantly increased in AD as compared with healthy controls. The origin of Ng in plasma and its possible use as a biomarker need to be further investigated. The results suggest that CSF Ng, in particular Ng(48-76), might reflect the neurodegenerative processes within the brain, indicating a role for Ng as a potential novel clinical biomarker for synaptic function in AD

    Comparison of Different Matrices as Potential Quality Control Samples for Neurochemical Dementia Diagnostics

    Get PDF
    Aim. Lactulose/mannitol ratio is used to assess intestinal barrier function. Aim of this work was to develop a robust and rapid method for the analysis of lactulose and mannitol in urine by liquid chromatography coupled to tandem mass spectrometry. Lactulose/mannitol ratio has been measured in pediatric patients suffering from irritable bowel syndrome. Methods. Calibration curves and raffinose, used as internal standard, were prepared in water : acetonitrile 20:80. Fifty mu L of urine sample was added to 450 mu L of internal standard solution. The chromatographic separation was performed using a Luna NH2 column operating at a flow rate of 200 mu L/min and eluted with a linear gradient from 20% to 80% water in acetonitrile. Total run time is 9 minutes. The mass spectrometry operates in electrospray negative mode. Method was fully validated according to European Medicine Agency guidelines. Results and Conclusions. Linearity ranged from 10 to 1000 mg/L for mannitol and 2.5 to 1000 mg/L for lactulose. Imprecision in intra-and interassay was lower than 15% for both analytes. Accuracy was higher than 85%. Lactulose/mannitol ratio in pediatric patients is significantly higher than that measured in controls. The presented method, rapid and sensitive, is suitable in a clinical laboratory
    corecore