8 research outputs found

    (Table 2) Species composition of agglutinated foraminifers from the abyssal zone of the Pacific Ocean

    No full text
    The quantitative study of distribution and taxonomic composition of recent living and dead (without plasma) benthic foraminifers revealed three foraminiferal assemblages in bottom sediments of the Pacific Ocean at depths of 3350 to 4981 m. The assemblage dominated by epibenthic Lagenammina difflugiformis, Reophax dentaliniformis, and Saccorhiza ramose occupies slopes of underwater hills. The assemblage with a high share of infaunal Cribrostomoides subglobosum, C. nitidum, and Ammobaculites agglutinans is registered on an abyssal plateau. The assemblage with a significant proportion of large Astrorhiza and Reophax species, which are characterized by active way of life, populates gentle slopes and narrow depressions with potentially strong bottom currents

    Soft glass multi-channel capillaries as a platform for bioimprinting

    No full text
    Multi-channel capillaries (MC) formed from thousands individual microcapillaries with diameters ranging 10-100 mu m are of a great interest for their use as platforms for molecular imprinting due to their relatively large surface area, high mechanical stability and possibility of facile integration in sensor systems. The manuscript proposes a new format of immunoassay based on imprinted protein immobilized on a MC inner surface modified with poly-L-lysine. The combination of the environmentally friendly, easy-to-produce and cheap recognition element with the carrier allowing to increase the assay sensitivity makes the described technique a perspective alternative for the existing screening tests. Two bioimprinting approaches were described. The imprinted protein (ovalbumin, OVA) primarily prepared separately and later immobilized on a MC structure was compared to the imprinted OVA directly prepared on the MC surface. Detection of a food contaminant zearalenone was chosen as a proof-of-concept. In a case of the immobilization of the primarily prepared imprinted OVA the reached limit of detection (LOD) was 0.8 ng/mL, and for the in-situ imprinted OVA the LOD was 0.12 ng/mL. The sensitivity of the developed bioimprinted assay was comparable to the commercially available ELISA kits for ZEN detection. The OVA in-situ imprinted on the MC surface was tested for the detection of ZEN in artificially spiked wheat samples. The high recovery values (88-112%) and good repeatability (RSD of 8.5-9.6%) were demonstrated allowing to conclude that the IPs-based MC-ELISA is a promising tool for analysis of the mycotoxin in complex matrices

    Rapid method for qualitative detection of 2,4,6-trinitrotoluene in environmental water samples

    No full text
    A gel-based immunoassay that can be used for the detection of 2,4,6-trinitrotoluene (TNT) in water samples was developed. Four polyclonal antibodies were generated in chickens using TNT derivatives. The assay was based on the immunoaffinity preconcentration and immuno-enzyme analysis of TNT in the gel. The results of the assay, assessed by color development, were evaluated visually and also by using a flatbed scanner and subsequent digital processing of the scanned gel. The most sensitive color mode, parameter S (saturation, HSB mode), was used for the immunoassay optimization and evaluation of the results. The immunoassays with the best parameters were optimized and characterized. A cut-off level of 5 mu g TNT L-1 was reached for water samples. It was shown that tap and environmental water samples could be analyzed directly, without sample preparation and dilution. The developed test is acceptable for use in an on-site field test to provide rapid (about 15 min for six samples), qualitative and reliable results for making environmental decisions such as identifying "hot spots", monitoring of military and terrorist activities, and selecting of site samples for laboratory analysis

    An immunochemical test for rapid screening of zearalenone and T-2 toxin

    No full text
    An immunochemically based test for noninstrumental simultaneous detection of zearalenone (ZEA) and T-2 toxin (T2) in feed was developed. The method combines clean-up of sample extract, pre-concentration of analytes by immunoextraction and immunodetection through the enzymatic reaction of horseradish peroxidase (HRP). The test is housed inside a standard 1-mL solid-phase extraction column and consists of three layers: two test layers (one for ZEA and another for T2) with immobilised specific antibodies and one control layer with bound anti-HRP antibodies. Feed extract was passed through an additional column with clean-up layer, which was disconnected after extract application. Total assay time was about 15 min for six samples and detection time was 4 min after chromogenic substrate application. Under optimised conditions a cut-off level for ZEA and T2 of 100 mu g/kg was established. Different feed types were analysed for ZEA and T2 contamination by the proposed method and results were confirmed by LC-MS/MS
    corecore