2,302 research outputs found

    Perancangan Interior Surabaya Science Centre

    Full text link
    During this rapid development era with its huge development. The education and entertainment world also experience those wide range changes. The recent entertaining site provides less focus on the educational facility. Which is then leads to the situation that it is more and more difficult to find educational supportive entertaining site. As one of the major cities in Indonesia, Surabaya lack of attention to the needs of society in the field of education entertainment. “Surabaya Science Centre” Interior design is an education entertainment facility which somehow can help the people to develop better in the field of education. The main facilities such as lobby, ticket area, an areas of biologys, earth and space areas, an area of physics, chemistry area, cinema area, cafe, office, and souvenir shop area provided. The concept of “Imaginative Life” is the description of the life of the imagination game with the aim of being informative, educative, as well as entertaining. Interior design applied in Surabaya Science Centre is created based on a fun atmosphere, colorful and thematic so that visitors can change their mindset from boring science being fun and amazing

    Sensitivity-bandwidth limit in a multi-mode opto-electro-mechanical transducer

    Full text link
    An opto--electro--mechanical system formed by a nanomembrane capacitively coupled to an LC resonator and to an optical interferometer has been recently employed for the high--sensitive optical readout of radio frequency (RF) signals [T. Bagci, \emph{et~al.}, Nature {\bf 507}, 81 (2013)]. Here we propose and experimentally demonstrate how the bandwidth of such kind of transducer can be increased by controlling the interference between two--electromechanical interaction pathways of a two--mode mechanical system. With a proof--of--principle device \new{operating at room temperature, we achieve a sensitivity of 300 nV/Hz^(1/2) over a bandwidth of 15 kHz in the presence of radiofrequency noise, and an optimal shot-noise limited sensitivity of 10 nV/Hz^(1/2) over a bandwidth of 5 kHz. We discuss strategies for improving the performance of the device, showing that, for the same given sensitivity, a mechanical multi--mode transducer can achieve a bandwidth} significantly larger than that of a single-mode one

    Characterization of a defective PbWO4 crystal cut along the a-c crystallographic plane: structural assessment and a novel photoelastic stress analysis

    Full text link
    Among scintillators, the PWO is one of the most widely used, for instance in CMS calorimeter at CERN and PANDA project. Crystallographic structure and chemical composition as well as residual stress condition, are indicators of homogeneity and good quality of the crystal. In this paper, structural characterization of a defective PbWO4 (PWO) crystal has been performed by X-ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Photoelasticity in the unusual a-c crystallographic plane. XRD and EDS analysis have been used to investigate crystallographic orientation and chemical composition, while stress distribution, which indicates macroscopic inhomogeneities and defects, has been obtained by photoelastic approaches, in Conoscopic and Sphenoscopic configuration. Since the sample is cut along the a-c crystallographic plane, a new method is proposed for the interpretation of the fringe pattern. The structural analysis has detected odds from the nominal lattice dimension, which can be attributed to the strong presence of Pb and W. A strong inhomogeneity over the crystal sample has been revealed by the photoelastic inspection. The results give reliability to the proposed procedure which is exploitable in crystals with other structures.Comment: 18 pages, 10 figures, revised versio

    Quantum dynamics of a vibrational mode of a membrane within an optical cavity

    Full text link
    Optomechanical systems are a promising candidate for the implementation of quantum interfaces for storing and redistributing quantum information. Here we focus on the case of a high-finesse optical cavity with a thin vibrating semitransparent membrane in the middle. We show that robust and stationary optomechanical entanglement could be achieved in the system, even in the presence of nonnegligible optical absorption in the membrane. We also present some preliminary experimental data showing radiation-pressure induced optical bistability.Comment: 6 pages, 2 figures. Work presented at the conference QCMC 2010 held on 19-23 July 2010 at the University of Queensland, Brisbane, Australi

    Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane

    Full text link
    We study the quantum dynamics of the cavity optomechanical system formed by a Fabry-Perot cavity with a thin vibrating membrane at its center. We first derive the general multimode Hamiltonian describing the radiation pressure interaction between the cavity modes and the vibrational modes of the membrane. We then restrict the analysis to the standard case of a single cavity mode interacting with a single mechanical resonator and we determine to what extent optical absorption by the membrane hinder reaching a quantum regime for the cavity-membrane system. We show that membrane absorption does not pose serious limitations and that one can simultaneously achieve ground state cooling of a vibrational mode of the membrane and stationary optomechanical entanglement with state-of-the-art apparatuses.Comment: 14 pages, 7 figure

    Optomechanical sideband cooling of a thin membrane within a cavity

    Full text link
    We present an experimental study of dynamical back-action cooling of the fundamental vibrational mode of a thin semitransparent membrane placed within a high-finesse optical cavity. We study how the radiation pressure interaction modifies the mechanical response of the vibrational mode, and the experimental results are in agreement with a Langevin equation description of the coupled dynamics. The experiments are carried out in the resolved sideband regime, and we have observed cooling by a factor 350 We have also observed the mechanical frequency shift associated with the quadratic term in the expansion of the cavity mode frequency versus the effective membrane position, which is typically negligible in other cavity optomechanical devices.Comment: 15 pages, 7 figure

    Optomechanically induced transparency in membrane-in-the-middle setup at room temperature

    Full text link
    We demonstrate the analogue of electromagnetically induced transparency in a room temperature cavity optomechanics setup formed by a thin semitransparent membrane within a Fabry-P\'erot cavity. Due to destructive interference, a weak probe field is completely reflected by the cavity when the pump beam is resonant with the motional red sideband of the cavity. Under this condition we infer a significant slowing down of light of hundreds of microseconds, which is easily tuned by shifting the membrane along the cavity axis. We also observe the associated phenomenon of electromagnetically induced amplification which occurs due to constructive interference when the pump is resonant with the blue sideband.Comment: 5 pages, 4 figure

    Speed Control of Non-collocated Stator-Rotor Synchronous Motor with Application in Robotic Surgery

    Get PDF
    This paper introduces Non-collocated Stator-Rotor Synchronous Motor (NSRSM) as a novel actuation system for cases where the stator and rotor are required to interact across a physical barrier. The main motivation for NSRSM is in the area of laparoscopic robotic surgery whereby it is desired to actuate the manipulators across the abdominal wall, but it also has potential application in other robotic surgery procedures. The configuration of NSRSM is similar to that of permanent magnet synchronous motor (PMSM) although due to asymmetric structure of the windings around the rotor, the electromechanical model of PMSMs was developed to obtain the dynamic model of NSRSM. The field oriented control method is used to develop an appropriate model for control purposes. Then two widely used control algorithms (PI controller and linear quadratic regulator (LQR)) are used to control the rotor speed in the presence of the modelling uncertainties and load disturbances. Simulation results show that these two methods are robust
    corecore