2,369 research outputs found

    Is the team leading surgeon criminally liable for his collaborators’ errors? judges confirm responsibility and condemn an otorhinolaryngologist

    Get PDF
    In current healthcare, delivery of medical and surgical treatment takes place in a multidisciplinary manner. This raises the problem of distinguishing the conditions under which the person who has properly carried out his duties, respecting the related leges artis, can be held responsible for damages materially caused by another member of the medical team. Jurisprudence has developed the so-called “principle of trust” for which every member of the team can rely on the fact that other members are acting in compliance with the leges artis of their specialisation. The Supreme Court has limited the application of this principle. The authors examine the jurisprudence on responsibility of the team in otolaryngology and conclude that individual liability should be limited to the specific expertise of the individual specialist

    An atypical case of trigeminal trophic syndrome: a legal medicine perspective in medical responsibility

    Get PDF
    BACKGROUND: Trigeminal trophic syndrome is a rare complication of peripheral or central damage to the trigeminal nerve characterized by anesthesia, paresthesia and a secondary persistent facial ulceration. METHODS: We describe the case of a 40-year-old woman with previous history of Le Fort I osteotomy for a class III malocclusion who developed trigeminal trophic syndrome. Atypically, the cutaneous symptoms appeared bilaterally and 8 years after surgery. RESULTS: Differential diagnosis was based on clinical history, tissue biopsy and serologic evaluation. Atypical findings could be linked to the surgical burdens of Le Fort I osteotomy, a procedure characterized by a bilateral incision on the maxillofacial bones with a reasonable probability of causing a bilateral injury of the peripheral branches of the trigeminal nerve. CONCLUSION: Although the long delay between trigeminal trophic syndrome onset and surgery and the absence of adequate medical evidence cannot confirm a link with previous surgery in this case, the increasing number of maxillofacial surgery cases suggests that this complication may be more frequent in the next decades, and thus, involved specialists should be aware of this condition as a possible complication of maxillofacial surgery procedures

    Statistical Reliability Estimation of Microprocessor-Based Systems

    Get PDF
    What is the probability that the execution state of a given microprocessor running a given application is correct, in a certain working environment with a given soft-error rate? Trying to answer this question using fault injection can be very expensive and time consuming. This paper proposes the baseline for a new methodology, based on microprocessor error probability profiling, that aims at estimating fault injection results without the need of a typical fault injection setup. The proposed methodology is based on two main ideas: a one-time fault-injection analysis of the microprocessor architecture to characterize the probability of successful execution of each of its instructions in presence of a soft-error, and a static and very fast analysis of the control and data flow of the target software application to compute its probability of success. The presented work goes beyond the dependability evaluation problem; it also has the potential to become the backbone for new tools able to help engineers to choose the best hardware and software architecture to structurally maximize the probability of a correct execution of the target softwar

    Forward to the past

    Get PDF
    Our daily experience shows that the CNS is a highly efficient machine to predict the effect of actions into the future; are we so efficient also in reconstructing the past of an action? Previous studies demonstrated we are more effective in extrapolating the final position of a stimulus moving according to biological kinematic laws. Here we address the complementary question: are we more effective in extrapolating the starting position (SP) of a motion following a biological velocity profile? We presented a dot moving upward and corresponding to vertical arm movements that were masked in the first part of the trajectory. The stimulus could either move according to biological or non-biological kinematic laws of motion. Results show a better efficacy in reconstructing the SP of a natural motion: participants demonstrate to reconstruct coherently only the SP of the biological condition. When the motion violates the biological kinematic law, responses are scattered and show a tendency toward larger errors. Instead, in a control experiment where the full motions were displayed, no-difference between biological and non-biological motions is found. Results are discussed in light of potential mechanisms involved in visual inference. We propose that as soon as the target appears the cortical motor area would generate an internal representation of reaching movement. When the visual input and the stored kinematic template match, the SP is traced back on the basis of this memory template, making more effective the SP reconstruction

    Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline Misses (Artifact)

    Get PDF
    This document provides a brief description of the artifact material related to the paper "Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline Misses". The code provided in the artifact implements the algorithms presented in the paper and all the experimental tests

    Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline Misses

    Get PDF
    Most works in schedulability analysis theory are based on the assumption that constraints on the performance of the application can be expressed by a very limited set of timing constraints (often simply hard deadlines) on a task model. This model is insufficient to represent a large number of systems in which deadlines can be missed, or in which late task responses affect the performance, but not the correctness of the application. For systems with a possible temporary overload, models like the m-K deadline have been proposed in the past. However, the m-K model has several limitations since it does not consider the state of the system and is largely unaware of the way in which the performance is affected by deadline misses (except for critical failures). In this paper, we present a state-based representation of the evolution of a system with respect to each deadline hit or miss event. Our representation is much more general (while hopefully concise enough) to represent the evolution in time of the performance of time-sensitive systems with possible time overloads. We provide the theoretical foundations for our model and also show an application to a simple system to give examples of the state representations and their use

    The role of tendon and subacromial bursa in rotator cuff tear pain. A clinical and histopathological study

    Get PDF
    To evaluate a possible association of shoulder pain with the clinical features and the histopathological changes occurring in the ruptured tendon and subacromial bursa of patients with rotator cuff tear

    Calibration of tri-axial MEMS accelerometers in the low-frequency range – Part 1: comparison among methods

    Get PDF
    Abstract. Two alternative experimental procedures for the calibration of tri-axial accelerometers have been compared with traditional methods, performed according the procedures stated in the standard ISO 16063-21. Standard calibration is carried out by comparison with a laser Doppler vibrometer (LDV), used as a primary reference transducer. The main sensitivities have been investigated and, where applicable, also transverse ones. Many aspects have been evaluated: the hypotheses about transverse sensitivities, the simplicity of the procedure, the number of measurements needed, and the effect of typology of transducer, depending on electrical and geometrical contributions. Two different accelerometers have been tested, a piezo-electric accelerometer and a capacitive MEMS accelerometer. A low-frequency range of vibration has been investigated, 3 and 6 Hz, with amplitude of acceleration ranging from 2 to 20 ms−2. A satisfactory reproducibility of methods has been verified, with percentage differences less than 2.5 %. Anyway, pros and cons of each method are also discussed with reference to their possible use for easy and quick calibration of low-cost tri-axial accelerometers

    Calibration of tri-axial MEMS accelerometers in the low-frequency range – Part 2: Uncertainty assessment

    Get PDF
    Abstract. A comparison among three methods for the calibration of tri-axial accelerometers, in particular MEMS, is presented in this paper, paying attention to the uncertainty assessment of each method. The first method is performed according to the ISO 16063 standards. Two innovative methods are analysed, both suitable for in-field application. The effects on the whole uncertainty of the following aspects have been evaluated: the test bench performances in realizing the reference motion, the vibration reference sensor, the geometrical parameters and the data processing techniques. The uncertainty contributions due to the offset and the transverse sensitivity are also studied, by calibrating two different types of accelerometers, a piezoelectric one and a capacitive one, to check their effect on the accuracy of the methods under comparison. The reproducibility of methods is demonstrated. Relative uncertainty of methods ranges from 3 to 5 %, depending on the complexity of the model and of the requested operations. The results appear promising for low-cost calibration of new tri-axial accelerometers of MEMS type

    Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

    Get PDF
    corecore