34 research outputs found

    Global Advances in Tomato Virome Research: Current Status and the Impact of High-Throughput Sequencing

    Get PDF
    Viruses cause a big fraction of economically important diseases in major crops, including tomato. In the past decade (2011–2020), many emerging or re-emerging tomato-infecting viruses were reported worldwide. In this period, 45 novel viral species were identified in tomato, 14 of which were discovered using high-throughput sequencing (HTS). In this review, we first discuss the role of HTS in these discoveries and its general impact on tomato virome research. We observed that the rate of tomato virus discovery is accelerating in the past few years due to the use of HTS. However, the extent of the post-discovery characterization of viruses is lagging behind and is greater for economically devastating viruses, such as the recently emerged tomato brown rugose fruit virus. Moreover, many known viruses still cause significant economic damages to tomato production. The review of databases and literature revealed at least 312 virus, satellite virus, or viroid species (in 22 families and 39 genera) associated with tomato, which is likely the highest number recorded for any plant. Among those, here, we summarize the current knowledge on the biology, global distribution, and epidemiology of the most important species. Increasing knowledge on tomato virome and employment of HTS to also study viromes of surrounding wild plants and environmental samples are bringing new insights into the understanding of epidemiology and ecology of tomato-infecting viruses and can, in the future, facilitate virus disease forecasting and prevention of virus disease outbreaks in tomato

    HIGH INFECTION PRESSURE OF ESFY PHYTOPLASMA THREATENS THE CULTIVATION OF STONE FRUIT SPECIES

    Get PDF
    European stone fruit yellows fi toplazma (ESFY; ‘Candidatus Phytoplasma prunorum’) povzroča pri koščičastih sadnih vrstah nevarno bolezen leptonekrozo koščičarjev. ESFY fi toplazma se na gostiteljske rastline iz roda Prunus prenaša z vektorjem češpljevo bolšico (Cacopsylla pruni), kakor tudi z vegetativnim razmnoževanjem. V nasadu koščičastih sadnih vrst, posajenem leta 2001 z brezvirusnim matičnim materialom, je bilo v letih 2004 – 2006 spremljano stanje glede okuženosti z ESFY fi toplazmo ter skupno odvzetih 158 vzorcev. Pri vseh sadnih vrstah so bila vzorčena tako simptomatična, kot asimptomatična drevesa. Od 15.7 % vzorčenih dreves marelic (Prunus armeniaca) v nasadu, je bila prisotnost fi toplazem potrjena pri 70.0 % vzorčenih drevesih. Pri slivah kitajsko- japonskega izvora (Prunus salicina) je bilo vzorčenje opravljeno pri tretjini matičnih rastlin, prisotnost ESFY fi toplazme je bila dokazana pri vseh vzorčenih rastlinah. Pri evropski slivi (Prunus domestica) je bila okuženost s fi toplazmami potrjena pri 51.0 % vzorčenih rastlin, pri čemer rastline večinoma niso kazale vidnih bolezenskih znamenj. Prisotnost ESFY fi toplazme je bila potrjena tudi pri 13.0 % vzorčenih drevesih breskve (Prunus persica). Pri češnji (Prunus avium) prisotnost fi toplazme ESFY ni bila potrjena. ESFY fi toplazma je bila v letu 2005 z laboratorijskim testiranjem potrjena tudi v vseh analiziranih vzorcih prenašalca Cacopsylla pruni.Stone fruit species are affected by severe disease caused by European stone fruit yellows phytoplasma (ESFY; ‘Candidatus Phytoplasma prunorum’). ESFY phytoplasma is transmitted to the host plants of Prunus spp. by the vector Cacopsylla pruni. The disease is graft-transmissible as well. The occurence of ESFY phytoplasma was monitored from 2004 to 2006 in a mother plant orchard of stone fruit species planted with virus free material in 2001 in the Primorska region of Slovenia. The total of 158 samples of mother plants were analysed in this period. The symptomatic and asymptomatic trees were analysed using molecular methods (PCR or nested-PCR). Among 15.7 % of sampled apricot trees (Prunus armeniaca) in the orchard, ESFY phytoplasma was detected in 70.0 % of samples. In the case of Japanese plum (Prunus salicina) samples were taken from one third of all Japanese plum trees and the presence of ESFY phytoplasma was confi rmed in all samples. In the European plum trees (Prunus domestica) the incidence of phytoplasma was determined in 51.0 % of sampled trees, where the plants in most cases did not show symptoms. ESFY phytoplasma was also detected in peaches and nectarines (Prunus persica) in 13.0 % of sampled trees while no detection of the phytoplasma was confi rmed in the samples of cherry trees (Prunus avium). With the survey performed in a mother plant orchard it was observed that especially young trees did not show typical symptoms and the infection was latent. In the year 2005, ESFY phytoplasma was detected in all tested samples of the vector Cacopsylla pruni captured in the vicinity of the mother plant orchard

    HIGH INFECTION PRESSURE OF ESFY PHYTOPLASMA THREATENS THE CULTIVATION OF STONE FRUIT SPECIES

    Get PDF
    European stone fruit yellows fi toplazma (ESFY; ‘Candidatus Phytoplasma prunorum’) povzroča pri koščičastih sadnih vrstah nevarno bolezen leptonekrozo koščičarjev. ESFY fi toplazma se na gostiteljske rastline iz roda Prunus prenaša z vektorjem češpljevo bolšico (Cacopsylla pruni), kakor tudi z vegetativnim razmnoževanjem. V nasadu koščičastih sadnih vrst, posajenem leta 2001 z brezvirusnim matičnim materialom, je bilo v letih 2004 – 2006 spremljano stanje glede okuženosti z ESFY fi toplazmo ter skupno odvzetih 158 vzorcev. Pri vseh sadnih vrstah so bila vzorčena tako simptomatična, kot asimptomatična drevesa. Od 15.7 % vzorčenih dreves marelic (Prunus armeniaca) v nasadu, je bila prisotnost fi toplazem potrjena pri 70.0 % vzorčenih drevesih. Pri slivah kitajsko- japonskega izvora (Prunus salicina) je bilo vzorčenje opravljeno pri tretjini matičnih rastlin, prisotnost ESFY fi toplazme je bila dokazana pri vseh vzorčenih rastlinah. Pri evropski slivi (Prunus domestica) je bila okuženost s fi toplazmami potrjena pri 51.0 % vzorčenih rastlin, pri čemer rastline večinoma niso kazale vidnih bolezenskih znamenj. Prisotnost ESFY fi toplazme je bila potrjena tudi pri 13.0 % vzorčenih drevesih breskve (Prunus persica). Pri češnji (Prunus avium) prisotnost fi toplazme ESFY ni bila potrjena. ESFY fi toplazma je bila v letu 2005 z laboratorijskim testiranjem potrjena tudi v vseh analiziranih vzorcih prenašalca Cacopsylla pruni.Stone fruit species are affected by severe disease caused by European stone fruit yellows phytoplasma (ESFY; ‘Candidatus Phytoplasma prunorum’). ESFY phytoplasma is transmitted to the host plants of Prunus spp. by the vector Cacopsylla pruni. The disease is graft-transmissible as well. The occurence of ESFY phytoplasma was monitored from 2004 to 2006 in a mother plant orchard of stone fruit species planted with virus free material in 2001 in the Primorska region of Slovenia. The total of 158 samples of mother plants were analysed in this period. The symptomatic and asymptomatic trees were analysed using molecular methods (PCR or nested-PCR). Among 15.7 % of sampled apricot trees (Prunus armeniaca) in the orchard, ESFY phytoplasma was detected in 70.0 % of samples. In the case of Japanese plum (Prunus salicina) samples were taken from one third of all Japanese plum trees and the presence of ESFY phytoplasma was confi rmed in all samples. In the European plum trees (Prunus domestica) the incidence of phytoplasma was determined in 51.0 % of sampled trees, where the plants in most cases did not show symptoms. ESFY phytoplasma was also detected in peaches and nectarines (Prunus persica) in 13.0 % of sampled trees while no detection of the phytoplasma was confi rmed in the samples of cherry trees (Prunus avium). With the survey performed in a mother plant orchard it was observed that especially young trees did not show typical symptoms and the infection was latent. In the year 2005, ESFY phytoplasma was detected in all tested samples of the vector Cacopsylla pruni captured in the vicinity of the mother plant orchard

    Bolusne aplikacije analgetične terapije po epiduralnem katetru

    Get PDF

    Tomato brown rugose fruit virus in aqueous environments – survival and significance of water-mediated transmission

    Get PDF
    Tomato brown rugose fruit virus (ToBRFV) has recently emerged as a major disease of tomatoes and peppers. ToBRFV is a seed- and contact-transmitted virus. In Slovenia, ToBRFV RNA was detected in samples of wastewater, river, and water used to irrigate plants. Even though the source of detected RNA could not be clearly established, this raised the question of the significance of the detection of ToBRFV in water samples and experimental studies were performed to address this question. The data presented here confirm that the release of virus particles from the roots of infected plants is a source of infectious ToBRFV particles in water and that the virus can remain infective up to four weeks in water stored at room temperature, while its RNA can be detected for much longer. These data also indicate that irrigation with ToBRFV-contaminated water can lead to plant infection. In addition, it has been shown that ToBRFV circulated in drain water in commercial tomato greenhouses from other European countries and that an outbreak of ToBRFV can be detected by regular monitoring of drain water. A simple method for concentrating ToBRFV from water samples and a comparison of the sensitivity of different methods, including the determination of the highest ToBRFV dilution still capable of infecting test plants, were also investigated. The results of our studies fill the knowledge gaps in the epidemiology and diagnosis of ToBRFV, by studying the role of water-mediated transmission, and provide a reliable risk assessment to identify critical points for monitoring and control

    Host range and symptomatology of Pepino mosaic virus strains occurring in Europe

    Get PDF
    Pepino mosaic virus (PepMV) has caused great concern in the greenhouse tomato industry after it was found causing a new disease in tomato in 1999. The objective of this paper is to investigate alternative hosts and compare important biological characteristics of the three PepMV strains occurring in Europe when tested under different environmental conditions. To this end we compared the infectivity and symptom development of three, well characterized isolates belonging to three different PepMV strains, EU-tom, Ch2 and US1, by inoculating them on tomato, possible alternative host plants in the family Solanaceae and selected test plants. The inoculation experiments were done in 10 countries from south to north in Europe. The importance of alternative hosts among the solanaceous crops and the usefulness of test plants in the biological characterization of PepMV isolates are discussed. Our data for the three strains tested at 10 different European locations with both international and local cultivars showed that eggplant is an alternative host of PepMV. Sweet pepper is not an important host of PepMV, but potato can be infected when the right isolate is matched with a specific cultivar. Nicotiana occidentalis 37B is a useful indicator plant for PepMV studies, since it reacts with a different symptomatology to each one of the PepMV strains.Ravnikar, M.; Blystad, D.; Van Der Vlugt, R.; Alfaro Fernández, AO.; Del Carmen Cordoba, M.; Bese, G.; Hristova, D.... (2015). Host range and symptomatology of Pepino mosaic virus strains occurring in Europe. European Journal of Plant Pathology. 143(1):43-56. doi:10.1007/s10658-015-0664-1S43561431Alfaro-Fernández, A., Córdoba-Sellés, M. C., Herrera-Vásquez, J. A., Cebrián, M. C., & Jordá, C. (2009). Transmission of Pepino mosaic virus by the fungal vector Olpidium virulentus. Journal of Phytopathology, 158, 217–226.Charmichael, D. J., Rey, M. E. C., Naidoo, S., Cook, G., & van Heerden, S. W. (2011). First report of Pepino mosaic virus infecting tomato in South Africa. Plant Disease, 95(6), 767.2.Córdoba, M. C., Martínez-Priego, L., & Jordá, C. (2004). New natural hosts of Pepino mosaic virus in Spain. Plant Disease, 88, 906.Córdoba-Sellés, M. C., García-Rández, A., Alfaro-Fernández, A., & Jordá-Gutiérrez, C. (2007). Seed transmission of pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Disease, 91, 1250–1254.Efthimiou, K. E., Gatsios, A. P., Aretakis, K. C., Papayannis, L. C., & Katis, N. I. (2011). First report of Pepino mosaic virus infecting greenhouse cherry tomato in Greece. Plant Disease, 95(1), 78.2.Fakhro, A., von Bargen, S., Bandte, M., Büttner, C., Franken, P., & Schwarz, D. (2011). Susceptibility of different plant species and tomato cultivars to two isolates of Pepino mosaic virus. European Journal of Plant Pathology, 129, 579–590.Gómez, P., Sempere, R. N., Elena, S. F., & Aranda, M. A. (2009). Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. Journal of Virology, 83, 12378–12387.Hanssen, I. M., Paeleman, A., Wittemans, L., Goen, K., Lievens, B., Bragard, C., Vanachter, A. C. R. C., & Thomma, B. P. H. J. (2008). Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. European Journal of Plant Pathology, 121, 131–146.Hanssen, I. M., Paeleman, A., Vandewoestijne, E., Van Bergen, L., Bragard, C., Lievens, B., Vanachter, A. C. R. C., & Thomma, B. P. H. J. (2009). Pepino mosaic virus isolates and differential symptomatology in tomato. Plant Pathology, 58, 450–460.Hanssen, I. M., Mumford, R., Blystad, D.-G., Cortez, I., Hasiów-Jaroszewska, B., Hristova, D., Pagán, I., Pereira, A.-M., Peters, J., Pospieszny, H., Ravnikar, M., Stijger, I., Tomassoli, L., Varveri, C., van der Vlugt, R., & Nielsen, S. L. (2010). Seed transmission of Pepino mosaic virus in tomato. European Journal of Plant Pathology, 126, 145–152.Hasiów-Jaroszewska, B., Borodynko, N., Jackowiak, P., Figlerowicz, M., & Pospieszny, H. (2010a). Pepino mosaic virus – a pathogen of tomato crops in Poland: biology, evolution and diagnostics. Journal of Plant Protection Research, 50, 470–476.Hasiów-Jaroszewska, B., Jackowiak, P., Borodynko, N., Figlerowicz, M., & Pospieszny, H. (2010b). Quasispecies nature of Pepino mosaic virus and its evolutionary dynamics. Virus Genes, 41, 260–267.Jeffries, C. J. (1998). FAO/IPGRI technical guidelines for the safe movement of germplasm no. 19. Potato. Food and agriculture organization of the United Nations, Rome/International Plant Genetic Resources Institute, Rome pp 177Jones, R. A. C., Koenig, R., & Lesemann, D. E. (1980). Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Annals of Applied Biology, 94, 61–68.Jordá, C., Lázaro Pérez, A., & Martínez Culebras, P. (2001). First report of Pepino mosaic virus on natural hosts. Plant Disease, 85, 1292.King, A. M. Q., Adams, M. J., Carstens, E. B., Lefkowitz, E. J., (eds). (2012). potexvirus, pp 912–915, in virus taxonomy, classification and nomenclature of viruses; ninth report of the international committee on taxonomy of viruses (p 1327) London, UK: Elsevier Academic PressLing, K.-S., & Zhang, W. (2011). First report of Pepino mosaic virus infecting tomato in Mexico. Plant Disease, 95(8), 1035.Martin, J., & Mousserion, C. (2002). Potato varieties which are sensitive to the tomato strains of Pepino mosaic virus (PepMV). Phytoma Défence Végétaux, 552, 26–28.Mehle, N., Gutierrez-Aguirre, I., Prezelj, N., Delić, D., Vidic, U., & Ravnikar, M. (2014). Survival and transmission of potato virus Y, pepino mosaic virus, and potato spindle tuber viroid in water. Applied and Environmental Microbiology, 80(4), 1455–1462.Moreno-Pérez, M. G., Pagán, I., Aragón-Caballero, L., Cáceres, F., Aurora Fraile, A., & García-Arenal, F. (2014). Ecological and genetic determinants of Pepino mosaic virus emergence. Journal of Virology, 88(6), 3359–3368.Noël, P., Hance, T., & Bragard, C. (2014). Transmission of the pepino mosaic virus by whitefly. European Journal of Plant Pathology, 138, 23–27.Pagan, I., Cordoba-Selles, M. D., Martinez-Priego, L., Fraile, A., Malpica, J. M., Jorda, C., & Garcia-Arenal, F. (2006). Genetic structure of the population of pepino mosaic virus infecting tomato crops in Spain. Phytopathology, 96, 274–279.Papayiannis, L. C., Kokkinos, C. D., & Alfaro-Fernández, A. (2012). Detection, characterization and host range studies of Pepino mosaic virus in Cyprus. European Journal of Plant Pathology, 132, 1–7.Pospieszny, H., Haslow, B., & Borodynko, N. (2008). Characterization of two Polish isolates of Pepino mosaic virus. European Journal of Plant Pathology, 122, 443–445.Salomone, A., & Roggero, P. (2002). Host range, seed transmission and detection by ELISA and lateral flow of an Italian isolate of Pepino mosaic virus. Journal of Plant Pathology, 84, 65–68.Samson, R. G., Allen, T. C., & Whitworth, J. L. (1993). Evaluation of direct tissue blotting to detect potato viruses. American Potato Journal, 70, 257–265.Schwarz, D., Beuch, U., Bandte, M., Fakhro, A., Büttner, C., & Obermeier, C. (2010). Spread and interaction of pepino mosaic virus (PepMV) and pythium aphanidermatum in a closed nutrient solution recirculation system: effects on tomato growth and yield. Plant Pathology, 59(3), 443–452.Shipp, J. L., Buitenhuis, R., Stobbs, L., Wang, K., Kim, W. S., & Ferguson, G. (2008). Vectoring of pepino mosaic virus by bumble-bees in tomato greenhouses. Annals of Applied Biology, 153, 149–155.Van der Vlugt, R. A. A. (2009). Pepino mosaic virus (review). Hellenic Plant Protection Journal, 2, 47–56.Van der Vlugt, R. A. A., & Stijger, C. C. M. M. (2008). Pepino mosaic virus. In B. W. J. Mahy & M. H. V. Van Regenmortel (Eds.), Encyclopedia of virology (5th ed., pp. 103–108). Wageningen: Oxford Elsevier.Van der Vlugt, R. A. A., Stijger, C. C. M. M., Verhoeven, J. T. J., & Lesemann, D.-E. (2000). First report of Pepino mosaic virus on tomato. Plant Disease, 84, 103.Van der Vlugt, R. A. A., Cuperus, C., Vink, J., Stijger, I. C. M. M., Lesemann, D.-E., Verhoeven, J. T. J., & Roenhorst, J. W. (2002). Identification and characterization of Pepino mosaic potexvirus in tomato. Bulletin EPPO/EPPO Bulletin, 32, 503–508.Verchot-Lubicz, J., Chang-Ming, Y., & Bamunusinghe, D. (2007). Molecular biology of potexviruses: recent advances. Journal of General Virology, 88(6), 1643–1655.Verhoeven, J. T. H. J., van der Vlugt, R., & Roenhorst, J. W. (2003). High similarity between tomato isolates of pepino mosaic virus suggests a common origin. European Journal of Plant Pathology, 109, 419–425.Werkman, A.W., & Sansford, C.E. (2010). Pest risk analysis for pepino mosaic virus for the EU. Deliverable Report 4.3. EU Sixth Framework project PEPEIRA. http:// www.pepeira.com .Wright, D., & Mumford, R. (1999). Pepino mosaic potexvirus (PepMV): first records in tomato in the United Kingdom. Plant disease notice (89th ed.). York, UK: Central Science Laboratory
    corecore