108 research outputs found

    The impact of evaporation fractionation on the inverse estimation of soil hydraulic and isotope transport parameters

    Get PDF
    Choosing a suitable process-oriented eco-hydrological model is essential for obtaining reliable simulations of hydrological processes. Determining soil hydraulic and solute transport parameters is another fundamental prerequisite. Research discussing the impact of considering evaporation fractionation on parameter estimation and practical applications of isotope transport models is limited. In this study, we analyzed parameter estimation results for two datasets for humid and arid conditions using the isotope transport model in HYDRUS-1D, in which we either did or did not consider fractionation. The global sensitivity analysis using the Morris and Sobol ’ methods and the parameter estimation using the Particle Swarm Optimization algorithm highlight the significant impact of considering evaporation fractionation on inverse modeling. The Kling-Gupta efficiency (KGE) index for isotope data can increase by 0.09 and 1.49 for the humid and arid datasets, respectively, when selecting suitable fractionation scenarios. Differences in estimated parameters propagate into the results of two practical appli- cations of stable isotope tracing: i) the assessment of root water uptake (RWU) and drainage travel times (i.e., the time elapsed between water entering the soil profile as precipitation and leaving it as transpiration or drainage) in the lysimeter (humid conditions) and ii) evaporation estimation in a controlled experimental soil column (arid conditions). The peak displacement method with optimized longitudinal dispersivity provides much lower travel times than those obtained using the particle tracking algorithm in HYDRUS-1D. Considering evaporation frac- tionation using the Craig-Gordon (CG) and Gonfiantini models is likely to result in estimates of older water ages for RWU than the no fractionation scenario. The isotope mass balance method that uses the isotopic composition profile simulated by HYDRUS-1D while considering fractionation using the CG and Gonfiantini models, or the measured evaporation isotope flux, provides comparable results in evaporation estimation as the HYDRUS-1D water mass balance method and direct laboratory measurements. In contrast, the no fractionation scenario reasonably estimates evaporation only when using the HYDRUS-1D water mass balance method. The direct use of simulated isotopic compositions in the no fractionation scenario may result in large biases in practical ap- plications in the arid zone where evaporation fractionation is more extensive than in humid areas

    Analysis of Groundwater Recharge in Mongolian Drylands Using Composite Vadose Zone Modeling

    Get PDF
    Knowledge of groundwater recharge (GR) is important for the effective management of water resources under semi-arid continental climates. Unfortunately, studies and data in Mongolia are limited due to the constraints in funding and lack of research infrastructures. Currently, the wide accessibility of freely available global-scale digital datasets of physical and chemical soil properties, weather data, vegetation characteristics, and depths to the water table offers new tools and basic information that can support low-cost physically based and process-oriented models. Estimates of GR over 41 study sites in Mongolia were obtained using HYDRUS-1D in a 2-m-thick soil profile with root depths of either 0.30 or 0.97m by exploiting the daily precipitation and biome-specific potential evapotranspiration values. The GR simulated by HYDRUS-1D arrives at the water table and becomes the actual GR with a lag time that has been calculated using a simplified form of the Richards equation and a traveling wave model. The mean annual precipitation ranges from 57 to 316mm year−1, and on average about 95% of it is lost by mean annual actual evapotranspiration. In the steppe region, the vegetation cover induces higher-than-normal actual transpiration losses and consequently lower GR. The mean annual GR rates span between 0.3 and 12.0mm year−1, while travel times range between 4 and 558 years. Model prediction uncertainty was quantified by comparing actual evapotranspiration and GR with available maps and by a sensitivity assessment of lag time to the soil moisture in the deep vadose zone. The partial least squares regression (PLSR) was used to evaluate the impact of available environmental properties in explaining the 47.1 and 59.1%variability of the spatially averaged mean annual GR and travel time, respectively. The most relevant contributors are clay content, aridity index, and leaf area index for GR, and depth to the water table and silt content for the lag time. In data-poor, arid, and semi-arid regions such as Mongolia, where the mean annual GR rates are low and poorly correlated to precipitation, the ever-increasing availability of world databases and remote sensing products offers promise in estimating GR

    Lithologic Influences on Groundwater Recharge through Incised Glacial Till from Profile to Regional Scales: Evidence from Glaciated Eastern Nebraska

    Get PDF
    [1] Variability in sediment hydraulic properties associated with landscape depositional and erosional features can influence groundwater recharge processes by affecting soil-water storage and transmission. This study considers recharge to aquifers underlying river-incised glaciated terrain where the distribution of clay-rich till is largely intact in upland locations but has been removed by alluvial erosion in stream valleys. In a stream-dissected glacial region in eastern Nebraska (Great Plains region of the United States), recharge estimates were developed for nested profile, aquifer, and regional scales using unsaturated zone profile measurements (matric potentials, Cl− and 3H), groundwater tracers (CFC-12 and SF6), and a remote sensing-assisted water balance model. Results show a consistent influence of till lithology on recharge rates across nested spatial scales despite substantial uncertainty in all recharge estimation methods, suggesting that minimal diffuse recharge occurs through upland glacial till lithology whereas diffuse recharge occurs in river valleys where till is locally absent. Diffuse recharge is estimated to account for a maximum of 61% of total recharge based on comparison of diffuse recharge estimated from the unsaturated zone (0–43 mm yr−1) and total recharge estimated from groundwater tracers (median 58 mm yr−1) and water balance modeling (median 56 mm yr−1). The results underscore the importance of lithologic controls on the distributions of both recharge rates and mechanisms

    Prediction of Biome-Specific Potential Evapotranspiration in Mongolia under a Scarcity of Weather Data

    Get PDF
    We propose practical guidelines to predict biome-specific potential evapotranspiration (ETp) from the knowledge of grass-reference evapotranspiration (ET0) and a crop coefficient (Kc) in Mongolia. A paucity of land-based weather data hampers use of the Penman–Monteith equation (FAO-56 PM) based on the Food and Agriculture Organization (FAO) guidelines to predict daily ET0. We found that the application of the Hargreaves equation provides ET0 estimates very similar to those from the FAO-56 PM approach. The Kc value is tabulated only for crops in the FAO-56 guidelines but is unavailable for steppe grasslands. Therefore, we proposed a new crop coefficient, Kc adj defined by (a) net solar radiation in the Gobi Desert (Kc adjD) or (b) leaf area index in the steppe region (Kc adjS) in Mongolia. The mean annual ETp obtained using our approach was compared to that obtained by FAO-56 guidelines for forages (not steppe) based on tabulated Kc values in 41 locations in Mongolia. We found the differences are acceptable (RMSE of 0.40 mm d-1) in northern Mongolia under high vegetation cover but rather high (RMSE of 1.69 and 2.65 mm d-1) in central and southern Mongolia. The FAO aridity index (AI) is empirically related to the ETp/ET0 ratio. Approximately 80% and 54% reduction of ET0 was reported in the Gobi Desert and in the steppe locations, respectively. Our proposed Kc adj can be further improved by considering local weather data and plant phenological characteristics

    Lithologic influences on groundwater recharge through incised glacial till from profile to regional scales: Evidence from glaciated Eastern Nebraska

    Get PDF
    Variability in sediment hydraulic properties associated with landscape depositional and erosional features can inïŹ‚uence groundwater recharge processes by affecting soil-water storage and transmission. This study considers recharge to aquifers underlying river-incised glaciated terrain where the distribution of clay-rich till is largely intact in upland locations but has been removed by alluvial erosion in stream valleys. In a stream-dissected glacial region in eastern Nebraska (Great Plains region of the United States), recharge estimates were developed for nested proïŹle, aquifer, and regional scales using unsaturated zone proïŹle measurements (matric potentials, Cl 2 and 3 H), groundwater tracers (CFC-12 and SF 6 ), and a remote sensing-assisted water balance model. Results show a consistent inïŹ‚uence of till lithology on recharge rates across nested spatial scales despite substantial uncertainty in all recharge estimation methods, suggesting that minimal diffuse recharge occurs through upland glacial till lithology whereas diffuse recharge occurs in river valleys where till is locally absent. Diffuse recharge is estimated to account for a maximum of 61% of total recharge based on comparison of diffuse recharge estimated from the unsaturated zone (0–43 mm yr 21 ) and total recharge estimated from groundwater tracers (median 58 mm yr 21 ) and water balance modeling (median 56 mm yr 21 ). The results underscore the importance of lithologic controls on the distributions of both recharge rates and mechanisms

    Revisiting the definition of field capacity as a functional parameter in a layered agronomic soil profile beneath irrigated maize

    Get PDF
    The soil water content at the condition of field capacity (ξFC) is a key parameter in irrigation scheduling and has been suggested to be determined by running a synthetic drainage experiment until the flux rate (q) at the bottom of the soil profile achieves a predefined negligible value (qFC). We question the impact of qFC on the assessment of field capacity. Moreover, calculating ξFC as the integral mean of the water content profile when q is equal to qFC is strictly valid only for uniform soil profiles. By contrast, this practice is ambiguous and biased for stratified soil profiles due to the soil water content discontinuity at the layer interfaces. In this study, the concept of field capacity was revisited and adapted to practical agronomic heuristics. By resorting to the assessment of root-zone water storage capacity (W), we envision field capacity as a functional hydraulic parameter derived from synthetic irrigation scheduling scenarios to minimize drought stress, drainage, and nitrate leachate below the root zone. A functional analysis was carried out on a 135-cm-thick layered soil profile beneath maize in eastern Nebraska. Onfarm irrigation scheduling applications and agricultural practices were recorded for 20 years (2001–2020) at a daily time step. Hydrus-1D was calibrated and validated with direct measurements of the soil water retention curve and soil water content data, respectively, in each soil layer. A set of functional field capacity values was derived from 24 irrigation scheduling scenarios, and the optimal water storage capacity at field capacity (WFC) was approximately 50 cm (corresponding to about 80% saturation in the soil profile). An average irrigation amount of 217.5 mm distributed over 21 events was obtained by using optimal irrigation scheduling, which was initiated when the matric pressure head took on a value of - 700 cm and the irrigation rate was set at 1.0 cm d-1. This irrigation practice ensured water storage at approximately the same level (ideally at WFC) by sustaining only evapotranspiration fluxes in the uppermost portion of the root zone and by limiting excessive drainage. This protocol can be transferred to other agricultural fields

    Impact of grassland conversion to forest on groundwater recharge in the Nebraska Sand Hills

    Get PDF
    Study region: Nebraska National Forest in the High Plains Aquifer, Nebraska Sand Hills, U.S.A. Study focus: This research aimed to investigate the effects of grassland conversions to forest on recharge rates in a century-old experimental forest. The DiffeRential Evolution Adaptive Metropolis (DREAMZS) global optimization algorithm was used to calibrate the effective soil hydraulic parameters from observed soil moisture contents for 220 cm deep uniform soil profiles. The historical recharge rates were then estimated by applying the numerical model HYDRUS 1-D for simulation of two plots representing grasslands and dense pine forest conditions. New hydrological insights: The results indicate that conversion from grasslands to dense pine forests led to vegetation induced changes in soil hydraulic properties, increased rooting depth, and greater leaf area index, which together altered the water budget considerably. The impacts of land use change, expressed in percent of gross precipitation, include a 7% increase in interception associated with an increase in leaf area index, a nearly 10% increase in actual evapotranspiration, and an overall reduction of groundwater recharge by nearly 17%. Simulated average annual recharge rates decreased from 9.65 cm yr−1 in the grassland to 0.07 cm yr−1 in the pine plot. These outcomes highlight the significance of the grassland ecology for water resources, particularly groundwater recharge, in the Nebraska Sand Hills and the overall sustainability and vitality of the High Plains Aquifer

    The combined impact of redcedar encroachment and climate change on water resources in the Nebraska Sand Hills

    Get PDF
    The Nebraska Sand Hills (NSH) is considered a major recharge zone for the High Plains Aquifer in the central United States. The uncontrolled expansion of the eastern redcedar (Juniperus Virginiana) under climate warming is posing threats to surface water and groundwater resources. The combined impact of land use and climate change on the water balance in the Upper Middle Loup River watershed (4,954 km2) in the NSH was evaluated by simulating different combination of model scenarios using the Soil Water Assessment Tool (SWAT) model. A total of 222 climate models were ranked according to the aridity index and three models representing wet, median (most likely), and dry conditions were selected. Additionally, the impacts of carbon dioxide (CO2) emissions on root water uptake were simulated. Four plausible redcedar encroachment scenarios, namely 0.5% (no encroachment), 2.4, 4.6, and 11.9%, were considered in the numerical simulations. We, therefore, built: i) the historical scenario (2000–2019) with the current climate and redcedar cover leading to baseline results; ii) the most-likely future scenario (2020–2099) with projected climate (50th percentile of aridity index distribution) and redcedar encroachment that was estimated by using a combination of neural network and Markov-chain cellular automata model; iii) 16 future scenarios (2020–2099) with different combinationsof extreme climate (5th and 95th percentiles of aridity index distribution) and four hypothetical encroachment scenarios (0.5, 2.4, 4.6, and 11.9%). The most-likely climate projection indicates that a warming pattern will be expected with a 4.1◩C increase in average over the 100-year period, and this will be associated with lower-than-normal precipitation (P). Nevertheless, the concurrent increase in temperature and CO2 concentration is likely to induce stomata closure by reducing potential (ETp) and actual (ETa) evapotranspiration losses. Projected P and ETa are expected to decrease by 10 and 14% while recharge (R) and discharge (D) are expected to increase by 38 and 30% for the period 2020-2050. For the period 2051-2099, the projected P and ETa are expected to decrease by 8 and 32% while R and D are expected to increase by 140.2 and 40%. Finally, a sensitivity analysis of 16 combined climate and land use scenarios is presented and discussed. The scenario modeling approach presented in this paper can support decision-making by stakeholders for optimal management of water resources

    Analysis of the Role of Tortuosity and Infiltration Constants in the Beerkan Method

    Get PDF
    It has recently been proposed to couple the Beerkan method with the Beerkan Estimation of Soil Transfer parameters (BEST) algorithm to facilitate the estima- tion of soil hydraulic parameters from an infiltration experiment. Although this simplified field procedure is relatively rapid and inexpensive, it has been doubt - ed if the Beerkan method can represent a valid and reliable alternative to other conventional methods. This study explored the impact of the tortuosity param- eter (p) and two infiltration constants included in the BEST algorithm using a sensitivity analysis applied to three experimental soils. The analysis that was validated using the numerical model HYDRUS 2D/3D indicates that the tortuosity is relatively insignificant compared to parameters b and g that have a large impact on the estimation procedure

    The Impact of Soil Tension on Isotope Fractionation, Transport, and Interpretations of the Root Water Uptake Origin

    Get PDF
    The new isotope module in HYDRUS-1D can be used to infer the origin of root water uptake (RWU), a suitable dynamic indicator for agriculture and forest water management. However, evidence shows that the equilibrium fractionation between liquid water and water vapor within the soil is affected not only by soil temperature but also by soil tension. How soil tension affects isotope transport modeling and interpretations of the RWU origin is still unknown. In this study, we evaluated three fractionation scenarios on model performance for a field data set from Langeoog Island: (a) no fractionation (Non_Frac), (b) the soil temperature control on equilibrium fractionation as described by the standard Craig-Gordon equation (CG_Frac), and (c) CG_Frac plus the soil tension control on equilibrium fractionation (CGT_Frac). The model simulations showed that CGT_Frac led to more depleted isotopic compositions of surface soil water than CG_Frac. The vertical origin of RWU was estimated using the water balance (WB) calculations and the Bayesian mixing model (SIAR). While the former directly used water flow outputs, the latter used as input simulated isotopic compositions (using different fractionation scenarios) of RWU and soil water. Both methods provided similar variation trends with time and depth in different soil layers' contributions to RWU. The contributions of all soil layers interpreted by the CGT_Frac scenario were always between Non_Frac and CG_Frac. The temporal origin of RWU was deduced from particle tracking (PT, releasing one hypothetical particle for individual precipitation event and tracking its movement based on the water balance between particles) and a virtual tracer experiment (VTE, assigning a known isotope composition to individual precipitation event and tracking its movement based on the cumulative isotope flux). Both methods revealed similar variation trends with time in drainage and root zone (RZ) travel times. The interpreted drainage and RZ travel times were generally ranked as Non_ Frac > CGT_Frac > CG_Frac. Overall, the factors considered in the standard CG equation dominated isotope fractionation, transport, and interpretations of the RWU origin. Isotope transport-based methods (SIAR, VTE) were more computationally demanding than water flow-based methods (WB, PT)
    • 

    corecore